

DILLON
CONSULTING

TOWN OF INGERSOLL

South West Ingersoll Secondary Plan

Transportation Assessment

Table of Contents

1.0 Introduction 1
1.1 Purpose 1
1.2 Background 1
2.0 Background Information and Development Policy Framework 4
2.1 Town of Ingersoll Corporate Strategic Plan 4
2.2 Oxford County Official Plan 4
2.3 Oxford County Transportation Master Plan 5
2.4 Oxford County Cycling Master Plan 5
2.5 Oxford County Trails Master Plan 6
3.0 Existing Conditions 7
3.1 Existing Networks and Demands 7
3.1.1 Active Transportation 7
3.1.2 Transit 9
3.1.3 Streets 11
3.2 Existing Conditions Performance 23
3.2.1 Methodology 23
3.2.2 Road Network Performance 23
4.0 Future Background Conditions 26
4.1 Forecasted Future Background Demand 26
4.1.1 Background Growth 26
4.1.2 Future Background Volumes 26
4.2 Future Background Performance. 28
4.2.1 Assumptions 28
4.2.2 Road Network Performance 28

Tables

Table 1: Main Roadways by Jurisdiction and Functional Classifications In and Around the Study Area 13
Table 2: Main Roadway Characteristics In and Around the Study Area. 14
Table 3: 24-Hour Traffic Count Characteristics 18
Table 4: Existing Railway Crossing Type Review 20
Table 5: Existing Peak Hour Traffic Count Characteristics 20
Table 6: Existing: Overall Intersection Levels of Service - PM Peak Hour 23
Table 7: Existing: Critical Movement, LOS and Capacity - PM Peak Hour (Signalized Intersections) .. 24
Table 8: Existing: Critical Movement, LOS and Capacity - PM Peak Hour (Unsignalized Intersections) 25
Table 9: Future Background (2046): Overall Intersection Levels of Service - PM Peak Hour 28
Table 10: Future Background (2046): Critical Movement, LOS and Capacity - PM Peak Hour (Signalized Intersections) 29
Table 11: Future Background (2046): Critical Movement, LOS and Capacity - PM Peak Hour (Unsignalized Intersections) 30
Table 12: Proposed Land Use Composition by Development Block 31
Table 13: Proposed Land Use Composition by Traffic Zone. 36
Table 14: Vehicle Trip Generation Rates by Land Use Type - PM Peak Hour 38
Table 15: Person Trips by Traffic Zone and Land Use - PM Peak Hour 38
Table 16: Trip Distribution based on Existing Travel Patterns 39
Table 17: Site Trip Directional Distribution by likely Travel Route 40
Table 18: Total Future (2046): Overall Intersection Levels of Service - PM Peak Hour (Unmitigated) 46
Table 19: Total Future (2046): Critical Movement, LOS and Capacity - PM Peak Hour (Unmitigated) 47
Table 20: Total Future (2046): Ingersoll Street and King Street West - PM Peak Hour (Mitigated - Signalization) 49
Table 21: Total Future (2046): Ingersoll Street and King Street West - PM Peak Hour (Mitigated - Signalization + Lane Modification) 49
Table 22: Total Future (2046): Plank Line and Curry Road - PM Peak Hour (Mitigated - Signalization) 50
Table 23: Total Future (2046): Ingersoll Street and Thompson Road - PM Peak Hour (Lane Modification) 51
Table 24: Total Future (2046): Union Road and Culloden Line - PM Peak Hour (Mitigated - Signalization) 52
Table 25: Total Future (2046): Union Road and Culloden Line - PM Peak Hour (Mitigated - Signalization + Lane Modification) 53
Table 26: Total Future (2046): Harris Street and Clarke Road - PM Peak Hour (Mitigated - Signalization) 54
Table 27: Total Future (2046): Harris Street and Clarke Road - PM Peak Hour (Mitigated - Signalization + Lane Modification) 54
Table 28: Total Future (2046): Plank Line and Curry Road - PM Peak Hour (Mitigated - Signalization) 55
Table 29: Total Future (2046): Plank Line and Curry Road - PM Peak Hour (Mitigated - Signalization + Lane Modification) 56
Table 30: Total Future (2046): Railway Crossing Type Review 57
Table 31: Total Future (2046): Railway Crossing Type Sensitivity Test 57
Table 32: Overall Intersection Levels of Service - PM Peak Hour. 59
Appendices

A Operations Reports: Existing Conditions
B Operations Reports: Future Background Conditions
C Operations Reports: Total Future Conditions - Unmitigated
D OTM Signal Warrants
E Operations Reports: Total Future Conditions - Mitigated (Signalization)
F Operations Reports: Total Future Conditions - Mitigated (Signalization + Lane Modifications)

G Operations Reports: Total Future Conditions - Mitigated (Lane Modifications)
H Capital Cost Estimates

1.0
 Introduction

1.1
 Purpose

This transportation report identifies the existing and planned multi-modal transportation issues and opportunities that will influence the development and investment within the South West Ingersoll Secondary Plan area. Issues and opportunities are identified through a review of existing transportation policies, and existing and forecast study area conditions. The area network performance is assessed and recommendations identified to mitigate issues, and maintain and enhance the efficiency and safety for all modes of travel.

Background
Ingersoll has a vibrant history as a small farming community on the banks of the Thames River. It is centrally located in southwest Ontario, accessible by Highway 401 and VIA Rail. It has a rich culture, quaint downtown, good employment opportunities and access to recreational and leisure activities, and is targeted for steady residential and employment growth. Of the 47,200 people and 21,100 job growth forecasted for Oxford County to $2046^{1}, 5,850$ people and 3,160 jobs are projected for Ingersoll. After factoring out growth that can be accommodated within the existing Built-up Area and the Designated Greenfield Area, Hemson's Land Need Assessment identified a need for an additional 75 gross hectares for residential and 109 gross hectares for employment by 2039. To help support long term growth, a boundary adjustment (effective January 2021) brought ~ 630 hectares of land from South-West Oxford into the Town of Ingersoll, which is the subject of this Secondary Plan study. In order to support long term growth, a number of technical studies and analysis is required to justify the settlement boundary expansion, confirm the community vision, manage land use compatibility and guide sustainable development and infrastructure investment.

There are generally three areas that make up the Secondary Plan study area, as described below and presented in Figure 1:

- East Side of Ingersoll: Approximately 59 hectares located north of Highway 401, east of County Road 119 / Harris Street. Current uses include manufacturing (steel fabricator) agricultural uses, including existing livestock operation (dairy) and associated residential. Surrounding uses include residential to the north (Special Policy Area), Hall's Creek Environmental Protection Area and watercourse to the west, Highway 401 to the south and agricultural lands to the east;
- West Side of Ingersoll: Approximately 280 hectares located north of Highway 401, west of County Road 10 / Ingersoll Street South and the CAMI plant, south of the Thames River and east of the Five Points Provincially Significant Wetland. Current uses include a large storage lot to the south, CP Rail corridor to the north and a spur line bisecting the study area connecting the

[^0]storage lot to the CP Rail corridor. There are agricultural uses west of Wallace Line and north of Thomas Road, several woodlots as well as some residential uses along King Street West. Surrounding uses include industry to the east (with a Special Policy Area between Thomas Road and the CP Rail corridor), and agricultural uses (including livestock operations) and a logistics company to the west; and

- South Side of Ingersoll: Approximately 280 hectares located south of Highway 401, north of Curry Road, east of Plank Line and west of Union Road. The land is currently predominately agricultural use, including livestock operations (chickens) with some associated residential. There is the Heslop Swamp Provincially Significant Wetland, watercourse and the CP Rail Line dissecting the Study Area, and a motel, storage facility and a large telecommunications tower towards Plank Line. Surrounding uses include industrial, agricultural uses and a golf course to the north of Highway 401, and agricultural uses to the east, south and west of the Study Area.

The Secondary Plan is intended to:

- Justify the settlement boundary expansion and address the remaining provincial policy requirements;
- Confirm a vision for the Study Area and identify alternative development concepts that would achieve the vision;
- Conduct a multi-disciplinary evaluation of the alternative development concepts and select the preferred alternative;
- Identify the required infrastructure, public facilities and policies needed to support and guide development; and
- Facilitate a collaborative, transparent and engaging process that supports good planning outcomes.

Figure 1: Study Area

STUDY AREA

Town of Ingersoll
South West Ingersoll Secondary Plan - Transportation Assessment
September 2023-22-4365

2.0
 Background Information and Development Policy Framework

The study area is located in the Town of Ingersoll in the County of Oxford. Therefore, the transportation components of the Secondary Plan will refer to, build on, and be subject to guidance from the following existing strategic policy documents:

- Town of Ingersoll Corporate Strategic Plan (2022)
- Oxford County Official Plan (2021);
- Oxford County Transportation Master Plan (2019);
- Oxford County Cycling Master Plan (2022); and
- Oxford County Trails Master Plan (2014).

The aforementioned policy framework documents are briefly described in below.

2.1

Town of Ingersoll Corporate Strategic Plan
The Town of Ingersoll Corporate Strategic Plan is a framework to guide Council and staff in the decisionmaking process and to direct resources to where they are needed to move the Town towards its desired future as envisioned by the community and articulated in the Plan.

The plan identifies the town's strategic pillars and goals and provides a prioritised action plan for achieving them. This includes the investment in recreational amenities and active transportation to respond to resident needs, with a specific action to develop more trails.

2.2
 Oxford County Official Plan

The Oxford County Official Plan is a set of policies intended to guide settlement within the county, including extent, pattern, and type of settlement. It is also designed to manage the use of land and resources to maintain and/or improve the quality of the natural environment and the quality of life of residents.

The Official Plan identifies the county's development strategy, policies related to growth management and land use, and supporting elements including transportation policy. Specifically for the Town of Ingersoll, the strategic transportation policy approach is to "provide a safe and efficient multi-modal transportation system which moves people and goods into and through the Town while meeting the present and future needs of the Town". Relevant transportation policies for the South West Ingersoll Secondary Plan include:

- When traffic conditions warrant, intersection improvements in the form of jog eliminations, installation of traffic signals, and channelization construction will be undertaken at the intersections indicated on Schedule I-4;
- Bicycling shall be promoted and improvements initiated that enhance bicycling as a means of transportation;
- The provision of sidewalks in or adjacent to new development as follows:
- on both sides of arterial and collector roads; and
- on at least one side of local streets;
- The elimination or improvement to level railway crossings, as indicated on Schedule I-4; and
- The Town will actively pursue the maintenance and improvement of rail service sufficient to meet the needs of industrial uses within the Town.

2.3 Oxford County Transportation Master Plan

The Oxford County 2019 Transportation Master Plan (TMP) is a strategic transportation policy document for the County. It defines policies, programs and infrastructure required to accommodate anticipated growth in transportation demand to the year 2038 (and beyond).

The TMP presents a mode share target for the year 2038 and identifies key transportation strategies, including a road network strategy, active transportation strategy, people and goods movement strategy, and transportation system sustainability and new technology strategy, to reach the target mode share and accommodate anticipated future demand in the county. It also provides an implementation timeframe for specific tasks related to the various strategies. Relevant actions for the South West Ingersoll Secondary Plan include:

- Oxford Road 9 (within Ingersoll) is identified for a road urbanization in relation to new development/ future growth;
- Continue with the program to provide a wider asphalt platform with edge line on rural roads as part of regular resurfacing programs and incorporate cycling facilities as part of any urban road reconstruction; and
- Upgrade railway grade crossings (based on current Transport Canada regulations) as required in collaboration with Rail Authorities.

2.4 Oxford County Cycling Master Plan

The Oxford County Cycling Master Plan identifies a proposed cycling network, including the location, facility type and priority of the various projects, for the county based on major destinations and high demand routes. It also provides an implementation strategy for the proposed network, and highlights relevant design guidelines to guide the design of bicycle facilities in the County. The proposed cycling projects relevant to the South West Ingersoll Secondary Plan area are discussed in Section 3.1.1.2 and illustrated in Figure 2.

Oxford County Trails Master Plan

The Oxford County Trails Master Plan contains objectives, a vision, and goals for the implementation of off-road trails and on-road cycling facilities in the County. It identifies gaps in the system and highlights opportunities for network improvements. The plan contains maps illustrating the proposed route network within the County, including location and facility type of the proposed trails, and identifies the level of priority of the various routes. The plan also provides a number of implementation tools to assist in implementing the trails network.

However, the proposed on-road cycling network within the Trails Master Plan has been superseded by the proposed cycling network in the Cycling Master Plan and the Trails Master Plan does not propose any off-road trails in or around the South West Ingersoll Secondary Plan area.
3.1 Existing Networks and Demands

Active Transportation
The South West Ingersoll Secondary Plan area contains a number of existing and planned Active Transportation (AT) facilities as illustrated in Figure 2.

EXISTING AND PLANNED ACTIVE TRANSPORTATION NETWORK

Legend
====: Secondary Plan Area
Existing Bike Lane
Existing In-Bouleva
Multi-Use Trail
——— Existing Trail
$\ldots \quad \begin{aligned} & \text { Proposed Designated Cycling }\end{aligned}$ Facility
Proposed Seperated Cycling
Facilty
——Provincial Highway
-County Road

- Municipal Road
- Railway
_Watercourse
Waterbody

Pedestrian Facilities

Within the study area, King Street West is the only road with consistent sidewalks on both sides. Clarke Road and Culloden Road (north of Samnah Crescent) have sidewalks on one side of the street, while Harris Street varies from zero to two sidewalks along its length. All other study area roads do not have sidewalks.
3.1.1.2 Cycling Facilities

There are no existing cycling facilities within the South West Ingersoll Secondary Plan Area. However, there are conventional bike lanes in both directions adjacent to the Secondary Plan Area along Clarke Road between Ingersoll Street and Plank Line, as illustrated in Figure 2. This cycling facility provides south Ingersoll with an east-west facility that connects local residential areas to employers, including the Cami assembly plant.

Additionally, there are a number of County cycling facilities that were recently planned as part of the Oxford County Cycling Master Plan (CMP). The CMP proposes 'separated' cycling facilities (i.e. Inboulevard multi-use pathways, or buffered bike lanes / buffered paved shoulders) along Ingersoll Street (County Road 10) and 'designated' cycling facilities (i.e. bike lanes / paved shoulders) along Culloden Line (County Road 10). These proposed cycling facilities will eventually connect the existing bike lanes along Clarke Road and a multi-use trail along Ingersoll Street (see Section 3.1.1.3) to the Secondary Plan Area south of Highway 401.
3.1.1.3 Multi-Use Facilities

There are no existing multi-use (cyclists and pedestrians) facilities within the South West Ingersoll Secondary Plan Area. However, there is an existing multi-use facility directly adjacent to the Secondary Plan Area along Ingersoll Street South between Clarke Road to Thomas Street, as illustrated in Figure 2. This multi-use trail, known locally as the Douglas Carr Memorial Trail, is a 1.5 km long paved multi-use trail that effectively connects the local residential areas to employers, including the Cami assembly plant. The trail is maintained year-round, including snow clearing, so it is an option for commuters regardless of the season.

Transit
The South West Ingersoll Secondary Plan area is not serviced by public transit. However, T:GO InterCommunity Transit Service, a regional transit service operated by the Town of Tillsonburg, has two routes (Route 1 and Route 4) that travel through the study area with stops within the Town of Ingersoll. The T:GO Inter-Community Transit routes passing through the South West Ingersoll Secondary Plan area are illustrated in Figure 3.

EXISTING TRANSIT ROUTES

The existing roadway classifications (as per Schedule l-4 of the County of Oxford Official Plan) in and around the South West Ingersoll Secondary Plan area are illustrated in Figure 4.

EXISTING ROADWAY CLASSIFICATIONS

Town of Ingersoll
South West Ingersoll Secondary Plan - Transportation Assessment
September 2023-22-4365

Table 1 summarizes the main roadways in and around the study area by their jurisdiction and functional classification as listed in Schedule I-4 of the County of Oxford Official Plan.

Table 1: Main Roadways by Jurisdiction and Functional Classifications In and Around the Study Area

Road	Jurisdiction	Road Classification
Highway 401	Ministry of Transportation, Ontario (MTO)	Provincial Freeway
Plank Line (Highway 19)	Ministry of Transportation, Ontario (MTO)	Provincial Highway
Harris Street / Plank Line (County Road 119)	Oxford County	Arterial
Culloden Line (County Road 10)	Oxford County	Arterial
King Street West (County Road 9)	Oxford County	Arterial
Ingersoll Street South (County Road 10)	Oxford County	Arterial
Culloden Road	Town of Ingersoll	Collector
Clarke Road	Town of Ingersoll	Collector
Thomas Street / Thomas Road	Town of Ingersoll	Local
Curry Road	Town of Ingersoll	Local
Union Road	Town of Ingersoll	Local
Wallace Line / Thompson Road	Town of Ingersoll	Local
Robinson Road		

Table 2 summarizes the characteristics of roadways in and around the study area.

Table 2: Main Roadway Characteristics In and Around the Study Area

Road	Number of Lanes within Study Area	Posted Speed Limit	On-Street Parking within Study Area*	Load Restrictions within Study Area
Highway 401	6	$100 \mathrm{~km} / \mathrm{h}$	None	None
Plank Line (Highway 19)	2	$80 \mathrm{~km} / \mathrm{h}$	None	None

Notes: \quad *Parking is prohibited between 3:00AM and 6:00AM during the winter months (December 1 to March 31)

Highway 401

Highway 401 is a 6-lane divided freeway spanning Ontario from Windsor to the provincial border with Quebec. It has paved shoulders and a median barrier. Highway 401 has two interchanges within Ingersoll; a partial cloverleaf (parclo A2) at County Road 10, and a double roundabout at County Road $119 /$ Highway 19. The speed limit is $100 \mathrm{~km} / \mathrm{h}$, and parking/stopping are prohibited.

Plank Line (Highway 19)

Plank Line is a 2-lane Provincial Highway. It travels from Highway 401 south into the town of Tillsonburg. North of Highway 401, Plank Line transitions to Harris Street. Plank line has a rural cross-section with variable paved and unpaved shoulders, and a posted speed limit of $80 \mathrm{~km} / \mathrm{h}$. Parking is prohibited along the entire length of Plank Line.

Harris Street (County Road 119)

Harris Street is a 2-lane arterial running between Charles Street E/Beachville Road and Highway 401. It transitions to Pemberton Street north of Charles Street East and to Plank Line south of Highway 401. South of Canterbury Street, Harris Street has a rural cross-section with primarily unpaved shoulders and a speed limit of $60 \mathrm{~km} / \mathrm{h}$. It transitions to an urban cross-section north of Canterbury Street, with sidewalks on one or both sides (varies along its length) and a speed limit of $50 \mathrm{~km} / \mathrm{h}$. Parking is prohibited along the entire length of Harris Street.

Culloden Road/Line (County Road 10)

Culloden Road is a 4-lane arterial with an urban cross-section. It has sidewalks on the east side between Maple Lane and Samnah Crescent, and no sidewalks south of Samnah Crescent. Culloden Road has a posted speed limit of $60 \mathrm{~km} / \mathrm{h}$, and both parking and stopping are prohibited along its entire length. Culloden Road travels over Highway 401 and transitions to Culloden Line, where it has a 2-lane rural cross-section with unpaved shoulders and a posted speed limit of $80 \mathrm{~km} / \mathrm{h}$. Parking is prohibited along Culloden Line as well.

King Street West (County Road 9)

King Street is a 2-lane arterial that travels east/west through Ingersoll and connects to London to the west and Woodstock to the east. Within Ingersoll, King Street has an urban cross-section with sidewalks on both sides and a posted speed limit of $50 \mathrm{~km} / \mathrm{h}$. Parking is prohibited along a good portion of King Street, however is permitted between approximately Church Avenue and Mill Street.

Ingersoll Street South (County Road 10)

Ingersoll Street South is a 4-lane arterial running between King Street West and Culloden Road. North of King St West it transitions to a 2-lane road as Ingersoll Street North. Ingersoll Street South has an urban cross-section with no sidewalks and on-street parking prohibited along its entire length. It has a posted speed limit of $50 \mathrm{~km} / \mathrm{h}$.

Key Intersections and Controls
The key intersections that were assessed within and around the South West Ingersoll Secondary Plan area are as follows:

- Plank Line (Highway 19) \& Highway 401 Westbound Ramps;
- Plank Line (Highway 19) \& Highway 401 Eastbound Ramps;
- Culloden Line (County Road 10) \& Highway 401 Eastbound Ramps;
- Culloden Line (County Road 10) \& Ingersoll Street South / Highway 401 Westbound Ramps;
- Harris Street (County Road 119) \& Clarke Road;
- Plank Line (Highway 19) \& Curry Road;
- Curry Road \& Union Road;
- Culloden Line (County Road 10) \& Union Road;
- Ingersoll Street South (County Road 10) \& Clarke Road;
- Ingersoll Street South (County Road 10) \& Thompson Road;
- Ingersoll Street South (County Road 10) \& Thomas Street;
- Ingersoll Street South (County Road 10) \& King Street West (County Road 9);
- Thomas Road \& Wallace Line; and
- Wallace Line \& Robinson Road.

Figure 5 shows the existing (2022) traffic controls and lane arrangements at the key intersections in and around the South West Ingersoll Secondary Plan area.

Figure 5: Existing Intersection Traffic Control and Lane Configuration

The railway crossings that were assessed within and around the South West Ingersoll Secondary Plan area are as follows:

- King Street, east of Ingersoll Street South;
- Ingersoll Street South, south of King Street;
- Thomas Road, west of Wallace Line;
- Thomas Road, east of Wallace Line; and
- Curry Road, east of Plank Line.

All of the railway crossings are at-grade, and are operated by the Ontario Southland Rail line.

Road-rail crossing types are evaluated based on an Exposure Index²:

Exposure Index (EI) = Average Daily Traffic (ADT) x Number of Daily Trains

The thresholds for crossing types based on the exposure index are as follows:

- $\mathrm{EI}<1,000=$ Passive Crossing;
- El 1,000 - 50,000 = Active Crossing, Flashing Lights and Bells;
- EI 50,000 - 200,000 = Active Crossing, Flashing Lights, Bells and Gate; and
- $\mathrm{EI} \geq 200,000=$ Grade Separated Crossing.

Dillon commissioned 24 hour traffic counts during October and November 2022. The 24 hour ATR counts collected motorcycle, automobile and heavy vehicle counts and speeds for a 24 hour period adjacent to each of the aforementioned road-rail crossings within the study area. Table 3 summarizes the characteristics of each of the 24 hour traffic counts that were conducted.

Table 3: 24-Hour Traffic Count Characteristics

Count Location	Count Type	Date
Curry Road - 700m west of Plank Line	ATR	Thursday October 272022
King Street West - 100m east of Ingersoll Street South	ATR	Thursday October 62022
Ingersoll Street - 60m south of King Street West	ATR	Wednesday October 262022
Thomas Road - 380m west of Wallace Line	ATR	Wednesday November 22022
Thomas Road - 130m east of Wallace Line	ATR	Thursday October 202022

Notes: ATR = Automatic Traffic Recorder

Figure 6 shows the existing (2022) railway crossing types in and around the South West Ingersoll Secondary Plan area, along with the 24 hour vehicle volumes on the links adjacent to the railway crossings.
${ }^{2}$ Transport Canada, Grade Crossing Standards, January 2019.

Figure 6: Existing Railway Crossing Types

Notes: Unlabeled railway crossings were not assessed due to their location outside of the Secondary Plan analysis area.

Table 4 summarises the existing railway crossing review for each of the aforementioned road-rail crossings.

Table 4: Existing Railway Crossing Type Review

Railway Crossing Location	Crossing Type	Trains per Day*	ADT**	Exposure Index
Curry Road	Passive Crossing	4	79	316
King Street West	Active Crossing (Flashing Lights and Bells)	6	4,990	29,940
Ingersoll Street	Active Crossing (Flashing Lights and Bells)	6	4,318	25,908
Thomas Road west of Wallace Line	Passive Crossing	4	107	428
Thomas Road east of Wallace Line	Passive Crossing	8	354	2,832

Notes: *At the time of collection (October 2022), the General Motors CAMI Assembly plant was shut down for retooling. As a result, fewer trains that usual were operating.
** 24 hour traffic counts were conducted during October and November 2022

Based on the Exposure Indices displayed in Table 4, the road-rail crossing at Thomas Road east of Wallace Line is more than 2 times higher than the base line reference of 1,000 . Therefore, this location should be upgraded to an active crossing with flashing lights and bells, similar to those at the railway crossings on King Street West and Ingersoll Street.

Travel Demands
Dillon commissioned peak hour traffic counts during October 2022. Table 5 summarizes the characteristics of each of the traffic counts that were conducted.

Table 5: Existing Peak Hour Traffic Count Characteristics

Count Location	Count Type	Date
Plank Line (Hwy 19) \& Hwy 401 WB Ramps	TMC	Tuesday October 252022
Plank Line (Hwy 19) \& Hwy 401 EB Ramps	TMC	Tuesday October 252022
Culloden Line (CR 10) \& Hwy 401 EB Ramps	TMC	Tuesday October 252022
Culloden Line (CR 10) \& Ingersoll Street South / Hwy 401 WB Ramps	TMC	Tuesday October 252022
Harris Street (CR 119) \& Clarke Road	TMC	Tuesday October 252022
Plank Line (Hwy 19) \& Curry Road	TMC	Tuesday October 252022
Curry Road \& Union Road	TMC	Tuesday October 252022
Culloden Line (CR 10) \& Union Road	TMC	Tuesday October 252022
Ingersoll Street South (CR 10) \& Clarke Road	TMC	Tuesday October 252022
Ingersoll Street South (CR 10) \& Thompson Road	TMC	Tuesday October 252022
Ingersoll Street South (CR 10) \& Thomas Street	TMC	Tuesday October 252022
Ingersoll Street South (CR 10) \& King Street West (CR 9)	TMC	Tuesday October 252022
Thomas Road \& Wallace Line	TMC	Tuesday October 252022
Wallace Line \& Robinson Road	TMC	Tuesday October 252022

Notes: TMC = Turning Movement Counts

The TMC's collected automobile, heavy vehicle, cyclist, and pedestrian counts for the PM peak period (16:00-18:00) at the study area intersections. With reference to these counts, there is minimal existing pedestrian and cycling travel during the peak hour within the study area.

Figure 7 shows the existing peak hour vehicle demands at the key intersections in and around the South West Ingersoll Secondary Plan area, rounded to the nearest 5 vehicles. The peak hour counts were balanced wherever deemed appropriate.

Figure 7: Existing Traffic Volumes - PM Peak Hour

3.2
 Existing Conditions Performance

3.2.1 Methodology

Level of service (LOS) and capacity analysis was completed using Trafficware's Synchro 11 software, which employs the 2000 Highway Capacity Manual (HCM 2000) methodology, and Transportation Research Laboratory's ARCADY 9. Only the PM peak hour has been assessed as it is the critical operating time period for the road network. Dillon incorporated existing traffic signal timing plans obtained from MTO to complete the analysis. Where possible, the signal timings were optimized during the analysis to improve intersection performance results.

3.2.2

Road Network Performance

Table 6, Table 7 and Table 8 display the results of the LOS and capacity analysis for signalized and unsignalized intersections. LOS, capacity, and delay are only given for the stop controlled movements at unsignalized intersections. The detailed Synchro and ARCADY operations reports for existing conditions are compiled in Appendix A.

Table 6: Existing: Overall Intersection Levels of Service - PM Peak Hour

	PM
	LOS
Culloden Road/Line @ Ingersoll Street/Highway 401 WB Ramps	A
Culloden Line @ Highway 401 EB Ramps	A
Wallace Line @ Thomas Road	A^{+}
Wallace Line @ Robinson Road	A^{+}
Ingersoll Street @ King Street W	B^{+}
Ingersoll Street @ Thomas Street	B^{+}
Ingersoll Street @ Clarke Road	A^{+}
Ingersoll Street @ Thompson Road	B^{+}
Union Road @ Culloden Line	B^{+}
Union Road @ Curry Road	A^{+}
Harris Street @ Clarke Road	D^{+}
Harris Street/County Road 119 @ Highway 401 WB Ramps	A^{\prime}
Plank Line/Highway 19 @ Highway 401 EB Ramps	A^{\prime}
Plank Line/Highway 19 @ Curry Road	C^{+}

Notes: +Unsignalized Intersection - Critical Movement

Table 7: Existing: Critical Movement, LOS and Capacity - PM Peak Hour (Signalized Intersections)

Intersection	Movement	v/c	LOS	Delay (s/veh)
	EB left	0.18	B	15.4
	EB through	0.40	B	16.5
Culloden Road/Line @	EB right	0.15	A	0.2
Ingersoll Street/Highway 401 WB	WB left	0.25	B	15.8
Ramps	WB through/right	0.17	B	15.0
	NB left	0.09	A	6.3
	NB through/right	0.23	A	6.9
	SB left	0.26	A	7.9
	SB through/right	0.28	A	7.7
	Overall	$\mathbf{0 . 3 2}$	A	$\mathbf{8 . 7}$
	EB approach	0.19	A	9.9
Culloden Line @	NB left	0.12	A	7.8
Highway 401 EB Ramps	NB through	0.10	A	7.6
	SB through	0.35	A	8.7

Table 8: Existing: Critical Movement, LOS and Capacity - PM Peak Hour (Unsignalized Intersections)

Intersection	Movement	v/c	LOS	Delay (s/veh)
Wallace Line @ Thomas Road	NB approach	0.01	A	8.7
Wallace Line @ Robinson Road	EB approach	0.02	A	8.6
Ingersoll Street @ King Street W	EB approach WB approach NB through NB right SB left SB through/right	$\begin{aligned} & 0.29 \\ & 0.43 \\ & 0.43 \\ & 0.06 \\ & 0.24 \\ & 0.29 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \\ & \text { A } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{gathered} 11.6 \\ 12.6 \\ 13.1 \\ 7.8 \\ 10.7 \\ 10.7 \end{gathered}$
Ingersoll Street @ Thomas Street	EB approach WB approach	$\begin{aligned} & 0.09 \\ & 0.12 \end{aligned}$	$\begin{aligned} & B \\ & B \end{aligned}$	$\begin{aligned} & 11.7 \\ & 11.7 \end{aligned}$
Ingersoll Street @ Clarke Road	WB approach	0.03	A	9.3
Ingersoll Street @ Thompson Road	EB approach	0.12	B	10.6
Union Road @ Culloden Line	EB approach WB approach	$\begin{aligned} & 0.00 \\ & 0.02 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{gathered} 0 \\ 10.6 \end{gathered}$
Union Road @ Curry Road	SB approach	0.01	A	8.5
Harris Street @ Clarke Road	EB left EB through WB approach	$\begin{aligned} & 0.19 \\ & 0.43 \\ & 0.36 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 30.8 \\ & 20.3 \\ & 23.9 \end{aligned}$
Harris Street/County Road 119 @ Highway 401 WB Ramps*	WB approach NB approach SB approach Overall		$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.6 \\ & 4.7 \\ & 4.0 \\ & 4.5 \end{aligned}$
Plank Line/Highway 19 @ Highway 401 EB Ramps*	EB approach NB approach SB approach Overall		$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.1 \\ & 3.9 \\ & 4.5 \\ & 4.2 \end{aligned}$
Plank Line/Highway 19 @ Curry Road	EB approach WB approach	$\begin{aligned} & 0.07 \\ & 0.06 \\ & \hline \end{aligned}$	C	$\begin{aligned} & 21.8 \\ & 21.6 \\ & \hline \end{aligned}$

Notes: *Roundabout analysis conducted using ARCADY 9
Critical movements are identified as those with a volume to capacity (v / c) ratio of 0.85 and above and/or with a LOS F. There are presently no critical movements at any of the study intersections due to the low traffic volumes in the South West Ingersoll Secondary Plan area. There is limited demand on the local roads in the study area, including Wallace Line, Robinson Road, Union Road and Curry Road. Consequently, all movements operate at LOS B or better at all intersections between two local roads. Otherwise, no movement operates below a LOS D , and the greatest v / c ratio of any movement is 0.43 . Ultimately, capacity and LOS are not presently of concern within the South West Ingersoll Secondary Plan area.

This section provides an overview of the future background transportation conditions within the South West Ingersoll Secondary Plan area.

4.1 Forecasted Future Background Demand

4.1.1 Background Growth

The future conditions assessment was completed for 2046, the horizon year for the Oxford County Official Plan.

An average annual growth rate for background vehicle traffic volumes was estimated by considering the following data sources:

- The Oxford County Official Plan indicated a projected population growth of approximately 1.2% per year between 2016 and 2046;
- The Oxford County Official Plan indicated an employment growth rate of 1.0% per year between 2016 and 2046; and
- The 2016 Canadian Census showed a 1.4% annual growth rate for the Town of Ingersoll between 2016 and 2021.

A compound annual growth rate (CAGR) for background vehicle traffic volumes of 1% per annum was selected (for all auto movements) to project the 2046 future background traffic volumes. This growth rate is believed to be conservative as it only needs to account for growth outside of the Secondary Plan area. In reality much of the growth within the Town of Ingersoll will be occurring within the South West Ingersoll Secondary Plan area.

Future Background Volumes
Figure 8 shows the 2046 future background traffic demands at the key intersections in and around the South West Ingersoll study area with the assumed 1% annual growth rate applied.

Figure 8: Future Background (2046) Traffic Volumes - PM Peak Hour

Future Background Performance

Assumptions
The intersection analysis was completed based on the following assumptions:

- Signal splits were optimized under the assumption that signal timings will change in the coming years to allow the intersections to operate as efficiently as possible; and
- Peak Hour Factors (PHFs) were adjusted to 1.00 for all intersections given the intended purpose (establishing infrastructure requirements) of the analysis. A PHF of 1.00 implies that traffic levels are evenly spread out over the whole hour, which is the case for intersections that are near capacity within the peak hour.

Road Network Performance
4.2.2.1 Intersection Level of Service and Capacity Analysis

Table 9, Table 10 and Table 11 display the results of the LOS and capacity analysis for signalized and unsignalized intersections. LOS, capacity, and delay are only given for the stop-controlled movements at unsignalized intersections. The detailed Synchro and ARCADY operations reports for future background conditions are compiled in Appendix B.

Table 9: Future Background (2046): Overall Intersection Levels of Service - PM Peak Hour

Intersection	Existing	2046 FB
	LOS	
Culloden Road/Line @ Ingersoll Street/Highway 401 WB Ramps	A	A
Culloden Line @ Highway 401 EB Ramps	A	A
Wallace Line @ Thomas Road	A^{+}	A^{+}
Wallace Line @ Robinson Road	A^{+}	A^{+}
Ingersoll Street @ King Street W	B^{+}	C^{+}
Ingersoll Street @ Thomas Street	B^{+}	B^{+}
Ingersoll Street @ Clarke Road	A^{+}	A^{+}
Ingersoll Street @ Thompson Road	B^{+}	B^{+}
Union Road @ Culloden Line	B^{+}	B^{+}
Union Road @ Curry Road	A^{+}	A^{+}
Harris Street @ Clarke Road	D^{+}	F^{+}
Harris Street/County Road 119 @ Highway 401 WB Ramps	A	A^{\prime}
Plank Line/Highway 19 @ Highway 401 EB Ramps	A	A^{2}
Plank Line/Highway 19 @ Curry Road	C^{+}	D^{+}

Notes: +Unsignalized Intersection - Critical Movement

Table 10: Future Background (2046): Critical Movement, LOS and Capacity - PM Peak Hour (Signalized Intersections)

Intersection	Movement	v/c	LOS	Delay (s/veh)
	EB left	0.19	B	16.9
	EB through	0.40	B	18.0
Culloden Road/Line @	EB right	0.17	A	0.3
Ingersoll Street/Highway 401 WB	WB left	0.27	B	17.4
Ramps	WB through/right	0.18	B	16.5
	NB left	0.11	A	6.8
	NB through/right	0.25	A	7.5
	SB left	0.30	A	8.8
	SB through/right	0.32	A	8.5
Culloden Line @	Overall	$\mathbf{0 . 3 4}$	A	9.6
Highway 401 EB Ramps	EB approach	0.17	B	11.5
	NB left	0.14	B	10.7
	NB through	0.11	B	10.4

Table 11: Future Background (2046): Critical Movement, LOS and Capacity - PM Peak Hour (Unsignalized Intersections)

Intersection	Movement	v/c	LOS	Delay (s/veh)
Wallace Line @ Thomas Road	NB approach	0.01	A	8.8
Wallace Line @ Robinson Road	EB approach	0.01	A	8.6
Ingersoll Street @ King Street W	EB approach WB approach NB through NB right SB left SB through	$\begin{aligned} & 0.38 \\ & 0.54 \\ & 0.55 \\ & 0.08 \\ & 0.30 \\ & 0.38 \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \mathrm{~B} \end{aligned}$	$\begin{gathered} 13.8 \\ 16.1 \\ 17.1 \\ 8.5 \\ 12.3 \\ 12.9 \end{gathered}$
Ingersoll Street @ Thomas Street	EB approach WB approach	$\begin{aligned} & 0.12 \\ & 0.16 \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 12.7 \\ & 12.8 \end{aligned}$
Ingersoll Street @ Clarke Road	WB approach	0.06	A	9.9
Ingersoll Street @ Thompson Road	EB approach	0.17	B	11.6
Union Road @ Culloden Line	EB approach WB approach	$\begin{aligned} & 0.00 \\ & 0.02 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{gathered} 0 \\ 11.0 \end{gathered}$
Union Road @ Curry Road	SB approach	0.01	A	8.4
Harris Street @ Clarke Road	EB left EB through WB approach	$\begin{aligned} & 0.35 \\ & 0.61 \\ & 0.59 \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{D} \\ & \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 52.1 \\ & 30.9 \\ & 43.0 \end{aligned}$
Harris Street/County Road 119 @ Highway 401 WB Ramps*	WB approach NB approach SB approach Overall		A	$\begin{aligned} & 5.7 \\ & 5.7 \\ & 4.9 \\ & 5.5 \end{aligned}$
Plank Line/Highway 19 @ Highway 401 EB Ramps*	EB approach NB approach SB approach Overall		$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.7 \\ & 4.6 \\ & 5.5 \\ & 4.9 \end{aligned}$
Plank Line/Highway 19 @ Curry Road	EB approach WB approach	$\begin{aligned} & 0.09 \\ & 0.10 \end{aligned}$	$\begin{aligned} & D \\ & D \end{aligned}$	$\begin{aligned} & 29.6 \\ & 25.5 \end{aligned}$

Notes: *Roundabout analysis conducted using ARCADY 9
Critical movements are identified as those with a volume to capacity (v/c) ratio of 0.85 and above and/or with a LOS F. The only critical movement under future background conditions is the eastbound left at the intersection of Harris Street and Clarke Road. However, no mitigation is proposed under future background conditions as the movements delay (52.1 seconds) only exceed the threshold for becoming critical by 2.1 seconds and the movement has a low v/c ratio of 0.35 . All other movements at study intersections operate at a LOS D or better. Ultimately, capacity and LOS are not of concern at the study intersections under future background conditions within the South West Ingersoll Secondary Plan area.

This section introduces and provides an overview of the proposed development concept of the South West Ingersoll Secondary Plan area and future transportation network.

5.1 Proposed Development

The proposed development is approximately 623 hectares that was subdivided into three development blocks, East of Ingersoll (east of Harris Street), South of Ingersoll (south of Highway 401), and West of Ingersoll (west of Ingersoll Street and north of Highway 401). Figure 9 presents the South West Ingersoll Land Use Plan.

The proposed development blocks are broken down by land use and the proposed number of residential units and jobs at full build out in Table 12.

Table 12: Proposed Land Use Composition by Development Block

Development Block	Land Use	Residential Units	Jobs
East of Ingersoll	Low Density Residential Medium Density Residential	200	761

LAND USE PLAN

Town of Ingersoll
South West Ingersoll Secondary Plan - Transportation Assessment

[^1]PROPOSED TRANSPORTATION NETWORK

Town of Ingersoll
South West Ingersoll Secondary Plan - Transportation Assessment
September 2023-22-4365

PROPOSED PUBLIC REALM IMPROVEMENTS AND ACTIVE TRANSPORTATION NETWORK

Legend

Secondary Plan Area
Environmental Protection
Proposed Public Realm Proposed Public
Improvements

Proposed Park/Ope
Space/Recreation
sh/ $\begin{aligned} & \text { Proposed Minor Gateway } \\ & \text { (Intersection Improvement) }\end{aligned}$
Proposed Major Gateway
$\longrightarrow \begin{aligned} & \text { Proposed Minor Streetscape } \\ & \text { Improvement Area - Industrial } \\ & \text { Pr }\end{aligned}$
$\ldots \quad \begin{aligned} & \text { Proposed Minor Streetscape } \\ & \text { Improvement Area }- \text { Residential }\end{aligned}$
$\longleftrightarrow \begin{gathered}\text { Proposed Major Streetscape } \\ \text { Improvement } \\ \text { Area - Industrial }\end{gathered}$
\longleftrightarrow Proposed Major Streetscape
--- - Proposed Bike Lane

- - -- Proposed Multi-Use Trail Connection
\longrightarrow Multi-Use Trail Suggested
\longrightarrow Connections
\rightarrow Proposed Treed Buffer
Existing and Planned AT Network
-_ Existing Bike Lane (Oxford County)

$=\quad \begin{aligned} & \text { In-Boulev } \\ & \text { County }\end{aligned}$

-_ Existing Trail (Oxford County)
--- - $\begin{aligned} & \text { Planned Designated Cycling Facility } \\ & \text { (Oxford Cycling Master Plan) (CMP) }\end{aligned}$
--- - $\begin{aligned} & \text { Planned Seperated Cycling Facility } \\ & \text { (Oxford Cycling Master Plan) (CMP) }\end{aligned}$

6.0 Site Generated Trips

Each of the development blocks within the proposed development concept will generate and attract new vehicle trips.

For ease of analysis, the South West Ingersoll Secondary Plan area was subdivided into eight Traffic Analysis Zones based on the existing transportation network, access points, physical barriers and the proposed development concept. The Traffic Zones and assumed access points are displayed in Figure 12. It should be noted that no direct access onto Culloden Line (County Road 10) or Plank Line (Highway 19) is being proposed.

The Traffic Zones are broken down by land use and the proposed number of residential units and jobs at full build out in Table 13.

Table 13: Proposed Land Use Composition by Traffic Zone

Traffic Zone	Land Use	Residential Units	Jobs
	Low Density Residential	200	-
2	Medium Density Residential	152	-
3	Low Density Residential	-	-
4	Medium Density Residential	609	-
5	Service Commercial	-	443
6	Prime Industrial	-	300
7	Prime Commercial	-	1,108
	Prime Industrial	-	129
	Prime Industrial	-	665

TRAFFIC ZONES

Town of Ingersoll
South West Ingersoll Secondary Plan - Transportation Assessment
September 2023-22-4365

6.1
 Trip Generation

Dillon used the Institute of Transportation Engineers (ITE) Trip Generation Manual, $11^{\text {th }}$ Edition, to estimate the vehicle trips generated by the proposed development. The rates used were for land uses that were assumed to be closest to the proposed development land use classifications. The trip generation rates used are summarized in Table 14.

Table 14: Vehicle Trip Generation Rates by Land Use Type - PM Peak Hour

Land Use	Unit	PM Peak Hour Rate	Split		Source
Classification			In	Out	
Low density residential	Vehicle trips per dwelling unit	0.99	64\%	36\%	ITE $11^{\text {th }}$ Ed, Land Use 210 Single family detached housing
Medium density residential	Vehicle trips per dwelling unit	0.61	62\%	38\%	ITE $11^{\text {th }}$ Ed, Land Use 215 Single family attached housing
Prime industrial	Vehicle trips per employee	0.42	50\%	50\%	ITE $11^{\text {th }}$ Ed, Land Use 130 Industrial Park
Service commercial*	Vehicle trips per employee	1.22	37\%	63\%	ITE $11^{\text {th }}$ Ed, Land Use 932 High Turnover Restaurant ITE $11^{\text {th }}$ Ed, Land Use 943 Automobile parts \& service centre ITE $11^{\text {th }}$ Ed, Land Use 710 General office building

Notes: *The service commercial trip generation rate was created as a combination of the three identified land uses

The final PM peak hour generated trips by land use for each of the traffic zones are shown in Table 15.

Table 15: Person Trips by Traffic Zone and Land Use - PM Peak Hour

Traffic Zone	Residential		Industrial		Commercial		Total	
	In	Out	In	Out	In	Out	In	Out
1	184	107	0	0	0	0	184	107
2	230	141	0	0	0	0	230	141
3	0	0	93	93	186	179	279	272
4	0	0	233	233	80	77	312	309
5	0	0	140	140	0	0	140	140
6	0	0	192	192	0	0	192	192
7	0	0	240	240	0	0	$\mathbf{2 4 0}$	$\mathbf{2 4 0}$
8	192	110	48	48	0	0	$\mathbf{2 4 1}$	158
Total	607	358	946	946	266	256	$\mathbf{1 , 8 1 9}$	$\mathbf{1 , 5 6 0}$

6.2

Trip Distribution

To determine the trip distribution for the South West Ingersoll study area, Dillon considered existing travel conditions, looking at percentage of vehicles entering and exiting the study area in each direction. Intersection turning movement counts were used as a guide in determining general travel patterns of vehicles within Ingersoll. The assumed trip distribution for trips originating in/destined to the study area is shown in Table 16.

Table 16: Trip Distribution based on Existing Travel Patterns

Direction of Travel	Proportion of Trips
North	25%
South	25%
East	35%
West	15%

Trip Assignment
The assignment of site trips to the road network was assumed to follow existing traffic patterns and using the most efficient and direct route into and out of each traffic zone. Table 17 shows the distribution of trips to specific routes as used for the assignment.

Table 17: Site Trip Directional Distribution by likely Travel Route

Traffic Zone	Travel Route	Distribution			
		North	East	South	West
		15\%	45\%	5\%	35\%
1 \& 2	North via Ingersoll Street	15\%			
	North via Harris Street	85\%			
	North via Culloden Road	0\%			
	East via Clarke Road		5\%		
	East via Highway 401 at Plank Line		95\%		
	East via Highway 401 at Culloden Road		0\%		
	East via Curry Road		0\%		
	South via Culloden Road			10\%	
	South via Plank Line			90\%	
	West via Thomas Road				0\%
	West via Robinson Road				0\%
	West via Highway 401 at Plank Line				100\%
	West via Highway 401 at Culloden Road				0\%
3	North via Ingersoll Street	10\%			
	North via Harris Street	80\%			
	North via Culloden Road	10\%			
	East via Clarke Road		0\%		
	East via Highway 401 at Plank Line		95\%		
	East via Highway 401 at Culloden Road		0\%		
	East via Curry Road		5\%		
	South via Culloden Road			20\%	
	South via Plank Line			80\%	
	West via Thomas Road				0\%
	West via Robinson Road				0\%
	West via Highway 401 at Plank Line				80\%
	West via Highway 401 at Culloden Road				20\%
4	North via Ingersoll Street	20\%			
	North via Harris Street	30\%			
	North via Culloden Road	50\%			
	East via Clarke Road		0\%		
	East via Highway 401 at Plank Line		70\%		
	East via Highway 401 at Culloden Road		25\%		
	East via Curry Road		5\%		
	South via Culloden Road			50\%	
	South via Plank Line			50\%	
	West via Thomas Road				0\%
	West via Robinson Road				0\%
	West via Highway 401 at Plank Line				0\%
	West via Highway 401 at Culloden Road				100\%

Traffic Zone	Travel Route	Distribution			
		North	East	South	West
		15\%	45\%	5\%	35\%
5	North via Ingersoll Street	30\%			
	North via Harris Street	20\%			
	North via Culloden Road	50\%			
	East via Clarke Road		0\%		
	East via Highway 401 at Plank Line		0\%		
	East via Highway 401 at Culloden Road		100\%		
	East via Curry Road		0\%		
	South via Culloden Road			80\%	
	South via Plank Line			20\%	
	West via Thomas Road				0\%
	West via Robinson Road				0\%
	West via Highway 401 at Plank Line				0\%
	West via Highway 401 at Culloden Road				100\%
6 \& 7	North via Ingersoll Street	100\%			
	North via Harris Street	0\%			
	North via Culloden Road	0\%			
	East via Clarke Road		0\%		
	East via Highway 401 at Plank Line		0\%		
	East via Highway 401 at Culloden Road		100\%		
	East via Curry Road		0\%		
	South via Culloden Road			80\%	
	South via Plank Line			20\%	
	West via Thomas Road				5\%
	West via Robinson Road				5\%
	West via Highway 401 at Plank Line				0\%
	West via Highway 401 at Culloden Road				90\%
8	North via Ingersoll Street	100\%			
	North via Harris Street	0\%			
	North via Culloden Road	0\%			
	East via Clarke Road		0\%		
	East via Highway 401 at Plank Line		0\%		
	East via Highway 401 at Culloden Road		90\%		
	East via Curry Road		0\%		
	South via Culloden Road		10\%		
	South via Plank Line			80\%	
	West via Thomas Road			20\%	
	West via Robinson Road				0\%
	West via Highway 401 at Plank Line				0\%
	West via Highway 401 at Culloden Road				10\%
	North via Ingersoll Street				90\%

Based on the assumptions outlined in Table 17, the traffic volumes generated by the proposed development concept were assigned to the network. This is shown in Figure 13.

Figure 13: Site Generated Traffic Volumes - PM Peak Hour

This section provides an overview of the total future transportation conditions within the South West Ingersoll Secondary Plan area and identifies the necessary infrastructure improvements required to support the development of the South West Ingersoll Secondary Plan area.

Forecasted Total Future Demand

The total future conditions combine the anticipated future background traffic growth and the site trips generated by the proposed South West Ingersoll Secondary Plan development concept.

The combined future total anticipated traffic in shown in Figure 14.

Figure 14: Total Future (2046) Traffic Volumes - PM Peak Hour

7.2	Total Future Performance
7.2 .1	Assumptions

The intersection analysis was completed based on the following assumptions:

- Signal splits were optimized under the assumption that signal timings will change in the coming years to allow the intersections to operate as efficiently as possible; and
- Peak Hour Factors (PHFs) were adjusted to 1.00 for all intersections given the intended purpose (establishing infrastructure requirements) of the analysis. A PHF of 1.00 implies that traffic levels are evenly spread out over the whole hour, which is the case for intersections that are near capacity within the peak hour.

Road Network Performance
7.2.2.1

Intersection Level of Service and Capacity Analysis
Table 18 and Table 19 display the results of the LOS and capacity analysis for the total future unmitigated conditions. Table 18 displays the overall unmitigated intersection LOS for the PM peak hour, while Table 19 displays the unmitigated results of the LOS and capacity analysis for signalized and unsignalized intersections for the PM peak hour. LOS, capacity, and delay are only given for the stopcontrolled movements at unsignalized intersections.

The detailed Synchro and ARCADY operations reports for the unmitigated total future conditions can be found in Appendix C.

Table 18: Total Future (2046): Overall Intersection Levels of Service - PM Peak Hour (Unmitigated)

Intersection	2046 FB	2046 TF Unmitigated
	LOS	
Culloden Road/Line @ Ingersoll Street/Highway 401 WB Ramps	A	B
Culloden Line @ Highway 401 EB Ramps	A	B
Wallace Line @ Thomas Road	A^{+}	A^{+}
Wallace Line @ Robinson Road	A^{+}	B^{+}
Ingersoll Street @ King Street W	C^{+}	F^{+}
Ingersoll Street @ Thomas Street	B^{+}	F^{+}
Ingersoll Street @ Clarke Road	A^{+}	B^{+}
Ingersoll Street @ Thompson Road	B^{+}	F^{+}
Union Road @ Culloden Line	B^{+}	F^{+}
Union Road @ Curry Road	A^{+}	A^{+}
Harris Street @ Clarke Road	F^{+}	F^{+}
Harris Street/County Road 119 @ Highway 401 WB Ramps	A	B
Plank Line/Highway 19 @ Highway 401 EB Ramps	A	A
Plank Line/Highway 19 @ Curry Road	D^{+}	F^{+}

Notes: +Unsignalized Intersection - Critical Movement

Table 19: Total Future (2046): Critical Movement, LOS and Capacity - PM Peak Hour (Unmitigated)

Intersection	Movement	2046 FB			2046 TF - Unmitigated		
		v/c	LOS	Delay (s/veh)	v/c	LOS	Delay (s/veh)
Culloden Road/Line @ Ingersoll Street/Highway 401 WB Ramps	EB left	0.19	B	16.9	0.22	C	20.8
	EB through	0.40	B	18.0	0.59	C	24.5
	EB right	0.17	A	0.3	0.41	A	0.8
	WB left	0.27	B	17.4	0.50	C	23.5
	WB through/right	0.18	B	16.5	0.39	C	21.4
	NB left	0.11	A	6.8	0.42	A	8.7
	NB through/right	0.25	A	7.5	0.38	A	8.5
	SB left	0.30	A	8.8	0.31	A	9.3
	SB through/right	0.32	A	8.5	0.36	A	9.0
	Overall	0.34	A	9.6	0.53	B	10.7
Culloden Line @ Highway 401 EB Ramps	EB approach	0.19	B	11.7	0.28	B	13.3
	NB left	0.15	B	10.5	0.61	C	20.1
	NB through	0.12	B	10.4	0.37	B	11.4
	SB through	0.41	B	12.3	0.81	C	20.6
	SB right	0.23	B	11.1	0.30	A	0.5
	Overall	0.31	B	12.7	0.62	B	12.6
Wallace Line @ Thomas Road	NB approach	0.01	A	8.8	0.15	A	9.1
Wallace Line @ Robinson Road	EB approach	0.01	A	8.6	0.02	B	10.7
Ingersoll Street @ King Street W	EB approach	0.38	B	13.8	0.87	E	48.3
	WB approach	0.54	C	16.1	0.80	E	38.8
	NB through/left	0.55	C	17.1	1.54	F	279.9
	NB right	0.08	B	8.5	0.10	B	11.1
	SB left	0.30	B	12.3	0.38	B	17.1
	SB through/right	0.38	B	12.9	1.03	F	81.4
Ingersoll Street @ Thomas Street	EB approach	0.12	B	12.7	0.97	F	99.7
	WB approach	0.16	B	12.8	0.42	D	33.3
Ingersoll Street @ Clarke Road	WB approach	0.06	A	9.9	0.12	B	12.2
Ingersoll Street @ Thompson Road	EB approach	0.17	B	11.6	0.91	F	55.9
Union Road @ Culloden Line	EB approach	0.00	A	0	3.11	F	Err
	WB approach	0.02	B	11.0	1.97	F	509
Union Road @ Curry Road	SB approach	0.01	A	8.4	0.09	A	4.9
Harris Street @ Clarke Road	EB left	0.35	F	52.1	Err	F	Err
	EB through/right	0.61	D	30.9	1.96	F	518
	WB approach	0.59	E	43.0	Err	F	Err
Harris Street/County Road 119 @ Highway 401 WB Ramps*	WB approach	-	A	5.7	-	B	12.5
	NB approach	-	A	5.7	-	B	12.0
	SB approach	-	A	4.9	-	A	9.3
	Overall	-	A	5.5	-	B	11.3
Plank Line/Highway 19 @ Highway 401 EB Ramps*	EB approach	-	A	4.7	-	A	7.5
	NB approach	-	A	4.6	-	A	8.8
	SB approach	-	A	5.5	-	B	11.7
	Overall	-	A	4.9	-	A	9.7
Plank Line/Highway 19 @	EB approach	0.09	D	29.6	Err	F	Err
Curry Road	WB approach	0.10	D	25.5	0.64	F	185.7

Notes: *Roundabout analysis conducted using ARCADY 9
"Err" indicates a delay or v/c ratio that is too high to be accurately calculated.

As noted in Table 19, the following intersections are expected to experience a poor level of service under future total conditions and will require mitigation strategies:

- Ingersoll Street @ King Street West;
- Ingersoll Street @ Thomas Street;
- Ingersoll Street @ Thompson Road;
- Union Road @ Culloden Line;
- Harris Street @ Clarke Road; and
- Plank Line @ Curry Road.

7.2.3.1 Ingersoll Street and King Street West

The intersection of Ingersoll Street at King Street West is a four legged, all-way stop controlled intersection. The east and west approaches on King Street West provide a single shared turning/through lane, while the north approach on Ingersoll Street has a dedicated left turn lane and a shared through/right turn lane and the south approach on Ingersoll Street has a dedicated right turn lane and a shared through/left turn lane. With the existing infrastructure and lane arrangements, the intersection of Ingersoll Street and King Street West is expected to perform poorly under 2046 future total conditions, will all four approaches close too or above capacity with a LOS F.

Based on the forecasted traffic volumes, it is recommended that the existing stop-controlled intersection be upgraded to a signalized intersection. The requirement for traffic signal control was assessed using 'Justification 7 - Projected Volumes' from the Ontario Traffic Manual (OTM) signal warrant guidelines ${ }^{3}$. The analysis indicates that signals are warranted at the intersection of Ingersoll Street and King Street West.

The signal warrant analysis worksheets can be found in Appendix D.
Table 20 displays the results of the LOS and capacity analysis for the total future conditions at the intersection of Ingersoll Street and King Street West after the traffic control mechanism was upgraded to signalization.

[^2]Table 20: Total Future (2046): Ingersoll Street and King Street West - PM Peak Hour (Mitigated Signalization)

Intersection	Movement	v/c	LOS	Delay $(\mathrm{s} / \mathrm{veh})$
	EB approach	0.93	D	54.4
Ingersoll Street @ King Street W	WB approach	0.57	C	21.8
	NB through/left	0.82	C	20.3
	NB right	0.03	A	55.6
	SB left	0.39	B	10.1
	SB through	0.38	A	8.1
	Overall	0.85	C	$\mathbf{2 3 . 2}$

The detailed Synchro operations reports for the mitigated (signalization) total future conditions can be found in Appendix E.

To further accommodate the increased volume of northbound traffic turning left, it is recommended that the existing northbound lane configuration is updated. The existing northbound shared through/left turn lane should be converted to a designated left turn lane, and the existing right turn lane should become a shared through/right turn lane.

Table 21 displays the results of the LOS and capacity analysis for the total future conditions at the intersection of Ingersoll Street and King Street West after the traffic control mechanism was upgraded to signalization and lane modifications were applied.

Table 21: Total Future (2046): Ingersoll Street and King Street West - PM Peak Hour (Mitigated Signalization + Lane Modification)

Intersection	Movement	v/c	LOS	Delay (s/veh)
	EB approach	0.70	B	18.8
Ingersoll Street @ King Street W	WB approach	0.46	B	13.4
	NB left	0.49	B	11.5
	NB through/right	0.47	A	9.4
	SB left	0.35	A	9.3
	SB through	0.45	A	9.1

The detailed Synchro operations reports for the mitigated (signalization + lane modifications) total future conditions can be found in Appendix F.

Capital cost estimates are compiled in Appendix H.

7.2.3.2
 Ingersoll Street and Thomas Street

The intersection of Ingersoll Street and Thomas Street is a four-legged, two-way stop controlled intersection, with stop control on Thomas Street. The east and west approaches on Thomas Street provide a single shared turning/through lane, while the north and south approaches on Ingersoll Street each have a through/left and a through/right lane. With the existing infrastructure and configuration, the intersection of Ingersoll Street and Thomas Street is expected to perform poorly under 2046 future total conditions, will the eastbound approach over capacity with a LOS F.

Based on the forecasted traffic volumes, it is recommended that the existing stop-controlled intersection be upgraded to a signalized intersection. The requirement for traffic signal control was assessed using 'Justification 7 - Projected Volumes' from the Ontario Traffic Manual (OTM) signal warrant guidelines ${ }^{4}$. The analysis indicates that signals are warranted at the intersection of Ingersoll Street and Thomas Street.

The signal warrant analysis worksheets can be found in Appendix \mathbf{D}.

Table 22 displays the results of the LOS and capacity analysis for the total future conditions at the intersection of Ingersoll Street and Thomas Street after the traffic control mechanism was upgraded to signalization.

Table 22: Total Future (2046): Plank Line and Curry Road - PM Peak Hour (Mitigated - Signalization)

Intersection	Movement	v/c	LOS	Delay (s/veh)
	EB approach	0.46	B	14.2
Ingersoll Street @ Thomas Street	WB approach	0.15	B	12.3
	NB approach	0.43	A	6.2
	SB approach	0.28	A	5.2

The detailed Synchro operations reports for the mitigated (signalization) total future conditions can be found in Appendix E.

Capital cost estimates are compiled in Appendix H.
7.2.3.3 Ingersoll Street and Thompson Road

The intersection of Ingersoll Street and Thompson Road is a three-legged, two-way stop-controlled intersection, with stop control on Thompson Road. The eastbound approach on Thompson Road provides a shared left-and-right-turn lane, while the northbound approach on Ingersoll Street has an auxiliary left turn lane and two through lanes and the southbound approach on Ingersoll Street has a

[^3]through lane and a through/right lane. With the existing infrastructure and lane arrangements, the intersection of Ingersoll Street and Thompson Road is expected to perform poorly under 2046 future total conditions, will the stop-controlled approach over capacity with a LOS F.
Based on the forecasted traffic volumes, it is recommended that the existing stop-controlled intersection be upgraded to a signalized intersection. The requirement for traffic signal control was assessed using 'Justification 7 - Projected Volumes' from the Ontario Traffic Manual (OTM) signal warrant guidelines ${ }^{5}$. The analysis indicates that signals are not warranted at the intersection of Ingersoll Street and Thompson Road. Projected volumes signal warrant analysis (Justification 7), is considered to be extremely conservative as the justification must be satisfied to 120%. The intersection should be reassessed for signal eligibility closer to the horizon year.

The signal warrant analysis worksheets can be found in Appendix D.

To improve operations without signalization it is recommended that the eastbound approach be reconfigured to provide a principal right turn lane and an auxiliary left-turn lane. The eastbound rightturn lane will operate at a LOS B, and the eastbound left turn will continue to operate at a LOS F, however the v / c ratio would be reduced from 0.91 to 0.42 .

Table $\mathbf{2 3}$ displays the results of the LOS and capacity analysis for the total future conditions where the additional lane modifications have been applied.

Table 23: Total Future (2046): Ingersoll Street and Thompson Road - PM Peak Hour (Lane Modification)

Intersection	Movement	v/c	LOS	Delay $(s / v e h)$
Ingersoll Street @ Thompson Road	EB left	0.42	F	61.7

The detailed Synchro operations reports for the mitigated (lane modifications) total future conditions can be found in Appendix G.

Capital cost estimates are compiled in Appendix H.
7.2.3.4 Union Road and Culloden Line

The intersection of Union Road and Culloden Line is a four-legged, two-way stop-controlled intersection, with stop control on Union Road. All approaches provide a shared turning/through lane. With the existing infrastructure and lane arrangements, the intersection of Union Road with Culloden Line is expected to perform poorly under 2046 future total conditions, with both of the stop-controlled approaches over capacity with a LOS F.
${ }^{5}$ Ontario Traffic Manual Book 12 - Traffic Signals, March 2012.

Based on the forecasted traffic volumes, it is recommended that the existing stop-controlled intersection be upgraded to a signalized intersection. The requirement for traffic signal control was assessed using 'Justification 7 - Projected Volumes' from the Ontario Traffic Manual (OTM) signal warrant guidelines ${ }^{6}$. The analysis indicates that signals are warranted at the intersection of Union Road and Culloden Line.

The signal warrant analysis worksheets can be found in Appendix D.

Table 24 displays the results of the LOS and capacity analysis for the total future conditions at the intersection of Union Road and Culloden Line after the traffic control mechanism was upgraded to signalization.

Table 24: Total Future (2046): Union Road and Culloden Line - PM Peak Hour (Mitigated Signalization)

Intersection	Movement	v/c	LOS	Delay $(\mathrm{s} /$ veh $)$
	EB approach	0.73	D	44.0
Union Road @ Culloden Line	WB approach	0.64	C	34.1
	NB approach	0.44	A	6.2
	SB approach	0.77	B	13.1

The detailed Synchro operations reports for the mitigated (signalization) total future conditions can be found in Appendix E.

To further accommodate the increased traffic volumes traveling to and from Union Road, it is recommended that auxiliary left-turn lanes, both northbound and southbound, be constructed on Culloden Line. The addition of the left-turn lanes not only improve traffic operations but also improve safety at the intersection by providing physical separation between the left turning vehicles that are slowing or stopped and the through traffic at the approach to the intersection.

Table 25 displays the results of the LOS and capacity analysis for the total future conditions at the intersection of Union Road and Culloden Line after the traffic control mechanism was upgraded to signalization and lane modifications were applied.

[^4]Table 25: Total Future (2046): Union Road and Culloden Line - PM Peak Hour (Mitigated Signalization + Lane Modification)

Intersection	Movement	v/c	LOS	Delay $(\mathrm{s} / \mathrm{veh})$
	EB approach	0.43	B	17.8
Union Road @ Culloden Line	WB approach	0.38	B	17.1
	NB left	0.10	A	4.8
	NB through/right	0.43	A	6.8
	SB left	0.37	A	7.3
	SB through/right	0.53	A	$\mathbf{7 . 8}$
	Overall	$\mathbf{0 . 5 0}$	A	$\mathbf{9 . 7}$

The detailed Synchro operations reports for the mitigated (signalization + lane modifications) total future conditions can be found in Appendix F.

Capital cost estimates are compiled in Appendix H.

7.2.3.5

Harris Street and Clarke Road
The intersection of Harris Street and Clarke Road is a four legged, two-way stop controlled intersection, with stop control on Clarke Road. The west approach on Clarke Road provides a single shared turning/ through lane while the other three approaches have an auxiliary left turn lane and a through/ right turn lane. With the existing infrastructure and lane arrangements, the intersection of Harris Street and Clarke Road is expected to perform poorly under 2046 future total conditions, with both of the stop controlled approaches over capacity with a LOS F.

Based on the forecasted traffic volumes, it is recommended that the existing stop-controlled intersection be upgraded to a signalized intersection. The requirement for traffic signal control was assessed using ‘Justification 7 - Projected Volumes' from the Ontario Traffic Manual (OTM) signal warrant guidelines ${ }^{7}$. The analysis indicates that signals are warranted at the intersection of Harris Street and Clarke Road.

The signal warrant analysis worksheets can be found in Appendix D.

Table 26 displays the results of the LOS and capacity analysis for the total future conditions at the intersection of Harris Street and Clarke Road after the traffic control mechanism was upgraded to signalization.

[^5]Table 26: Total Future (2046): Harris Street and Clarke Road - PM Peak Hour (Mitigated Signalization)

Intersection	Movement	v/c	LOS	Delay (s/veh)
	EB left	0.13	C	21.7
Harris Street @ Clarke Road	EB through/right	0.37	C	23.9
	WB approach	1.02	F	84.9
	NB left	0.25	B	16.0
	NB through/right	0.93	D	41.4
	SB left	0.73	C	31.4
	SB through/right	0.41	B	11.7
	Overall	$\mathbf{1 . 0 1}$	D	$\mathbf{3 8 . 5}$

The detailed Synchro operations reports for the mitigated (signalization) total future conditions can be found in Appendix \mathbf{E}.

To further accommodate the increased traffic volumes traveling to and from the proposed residential development east of Harris Street, it is recommended that an auxiliary westbound left-turn lane be constructed on Clarke Road and an auxiliary northbound right-turn lane be constructed on Harris Street. The addition of the auxiliary turn lanes not only improves traffic operations but also improve safety at the intersection by providing physical separation between the turning vehicles that are slowing or stopped and the through traffic at the approach to the intersection.

Table 27 displays the results of the LOS and capacity analysis for the total future conditions at the intersection of Harris Street and Clarke Road after the traffic control mechanism was upgraded to signalization and lane modifications were applied.

Table 27: Total Future (2046): Harris Street and Clarke Road - PM Peak Hour (Mitigated - Signalization + Lane Modification)

Intersection	Movement	v/c	LOSDelay (s/veh)	
	EB left	0.17	C	22.5
Harris Street @ Clarke Road	EB through/right	0.55	C	25.9
	WB left	0.61	B	19.9
	WB though/right	0.20	B	15.3
	NB left	0.29	B	16.0
	NB through	0.68	C	21.7
	NB right	0.19	B	13.9
	SB left	0.46	B	11.5
	SB through/right	0.46	B	11.6
	Overall	$\mathbf{0 . 6 9}$	B	$\mathbf{1 7 . 3}$

The detailed Synchro operations reports for the mitigated (signalization+ lane modifications) total future conditions can be found in Appendix F.

Capital cost estimates are compiled in Appendix H.

7.2.3.6 Plank Line and Curry Road

The intersection of Plank Line and Curry Road is a four legged, two-way stop controlled intersection, with stop control on Curry Road. All approaches provide a shared turning/through lane. With the existing infrastructure and lane arrangements, the intersection of Plank Line and Curry Road is expected to perform poorly under 2046 future total conditions, with the eastbound approach over capacity and both the eastbound and westbound approach operating at LOS F.

Based on the forecasted traffic volumes, it is recommended that the existing stop-controlled intersection be upgraded to a signalized intersection. The requirement for traffic signal control was assessed using 'Justification 7 - Projected Volumes' from the Ontario Traffic Manual (OTM) signal warrant guidelines ${ }^{8}$. The analysis indicates that signals are warranted at the intersection of Plank Line and Curry Road.

The signal warrant analysis worksheets can be found in Appendix D.

Table 28 displays the results of the LOS and capacity analysis for the total future conditions at the intersection of Plank Line and Curry Road after the traffic control mechanism was upgraded to signalization.

Table 28: Total Future (2046): Plank Line and Curry Road - PM Peak Hour (Mitigated - Signalization)

Intersection	Movement	v/c	LOS	Delay (s/veh)
	EB approach	1.15	F	136.9
Plank Line/Highway 19 @	WB approach	0.05	C	28.7
Curry Road	NB approach	0.85	B	18.7
	SB approach	0.83	B	16.6

The detailed Synchro operations reports for the mitigated (signalization) total future conditions can be found in Appendix E.

To further accommodate the increased traffic volumes traveling to and from Curry Road, it is it is recommended that an auxiliary eastbound left-turn lane be constructed on Curry Road and an auxiliary southbound right-turn lane be constructed on Plank Line. The addition of the turn lanes not only improve traffic operations but also improve safety at the intersection by providing physical separation between the turning vehicles that are slowing or stopped and the through traffic at the approach to the intersection.

[^6]Table 29 displays the results of the LOS and capacity analysis for the total future conditions at the intersection of Plank Line and Curry Road after the traffic control mechanism was upgraded to signalization and lane modifications were applied.

Table 29: Total Future (2046): Plank Line and Curry Road - PM Peak Hour (Mitigated - Signalization + Lane Modification)

Intersection	Movement	v/c	LOS	Delay $(\mathrm{s} / \mathrm{veh})$
	EB left	0.70	C	26.5
Plank Line/Highway 19 @	EB through/right	0.09	B	17.4
Curry Road	WB approach	0.04	B	17.1
	NB left	0.31	A	9.0
	NB through/right	0.75	B	13.1
	SB through/left	0.72	B	12.4
	SB right	0.15	A	5.5
	Overall	$\mathbf{0 . 7 3}$	B	$\mathbf{1 3 . 6}$

The detailed Synchro operations reports for the mitigated (signalization + lane modifications) total future conditions can be found in Appendix F.

Capital cost estimates are compiled in Appendix H.

7.2.3.7
 Additional Recommendations

The intersection of Union Road and Curry Road is a skewed three legged, two-way stop controlled intersection, with stop control on Curry Road. All approaches have a single shared through/turn lane. With the existing configuration in place, the intersection of Union Road and Curry Road is expected to perform sufficiently under 2046 future total conditions, will the stop controlled approach operating at a LOS A. However, under 2046 future total conditions that main traffic movements are between Union Road west of the intersection and Curry Road. As a result, relocating the stop sign from the approach on Curry Road to the westbound approach on Union Road will reduce unnecessary delays for the highest volume movements and will maintain the LOS A on the stop controlled approach.

Alternatively, the westbound approach on Union Road could be dead ended. This modification would serve the same purpose as relocating the stop sign but would have the added benefit of eliminating all turning movements form the intersection, thus improving safely, and reducing cut-through traffic on Union Road east of Curry Road.

Railway Crossing Exposure Index
Railway crossing infrastructure was re-assessed under 2046 total future conditions. Dillon estimated the ADT volumes by assuming that the PM peak hour traffic volumes will account for 10% of the daily traffic
volumes ${ }^{9}$. The volume of trains per day has not been increased from the 2022 volumes provided by Ontario Southland Rail line. As a result, the 2046 exposure indices presented in Table 30, reflect a bestcase scenario.

Table 30: Total Future (2046): Railway Crossing Type Review

Railway Crossing Location	Existing Crossing Type	Trains per Day	ADT	Exposure Index	Recommended Crossing Type
Curry Road	Passive Crossing	4	6,880	27,520	Active Crossing (flashing lights and bells)
King Street West	Active Crossing (Flashing Lights and Bells)	6	6,470	38,820	Active Crossing (flashing lights and bells)
Ingersoll Street	Active Crossing (Flashing Lights and Bells)	6	11,260	67,560	Active Crossing (flashing lights, bells, and gate)
Thomas Road west of Wallace Line	Passive Crossing	4	200	800	Passive Crossing
Thomas Road east of Wallace Line	Passive Crossing	8	3,950	31,600	Active Crossing (flashing lights and bells)

Acknowledging that fewer trains than usual were operating when existing conditions were collected (due to the General Motors CAMI Assembly plant shut down) and to capture the potential growth in rail operations, a railway crossing sensitivity test was conducted. The existing number of trains per day was increased by 50\%. Table $\mathbf{3 1}$ displays the results of the railway crossing sensitivity test.

Table 31: Total Future (2046): Railway Crossing Type Sensitivity Test

Railway Crossing Location	Existing Crossing Type	Trains per Day	ADT	Exposure Index	Recommended Crossing Type
Curry Road	Passive Crossing	6	6,880	41,280	Active Crossing (flashing lights and bells)
King Street West	Active Crossing (Flashing Lights and Bells)	9	6,470	58,230	Active Crossing (flashing lights bells and gate)
Ingersoll Street	Active Crossing (Flashing Lights and Bells)	9	11,260	101,340	Active Crossing (flashing lights bells and gate)
Thomas Road west of Wallace Line	Passive Crossing	6	200	1,200	Active Crossing (flashing lights and bells)
Thomas Road east of Wallace Line	Passive Crossing	12	3,950	47,400	Active Crossing (flashing lights and bells)

${ }^{9} 10 \%$ is a conservative estimate based on size, urban form and physical location of Ingersoll.

Based on the Exposure Indices displayed in Table $\mathbf{3 0}$ and Table 31, it is recommended that all existing railway crossings are upgraded. The crossings located on Curry Road and Thomas Road (both east and west of Wallace line) are currently passive crossings. Based on the estimated exposure indices, they should be upgraded to active crossings with flashing lights and bells. The crossings on Ingersoll Street and King Street West are currently active crossings with flashing lights and bells. Based on the estimated exposure indices, they be upgraded to active crossings with flashing lights, bells and gates.

Capital cost estimates are compiled in Appendix H.

8.0 Conclusions and Recommendations

This section summarizes the findings of this transportation report and highlights Dillon's recommendations for an efficient and safe future road network.

A summary of the LOS analysis in each scenario is provided in Table 32.

Table 32: Overall Intersection Levels of Service - PM Peak Hour

Intersection	Existing	2046 FB	2046 TF Unmitigated	$2046 \text { TF }$ Mitigated
	LOS			
Culloden Road/Line @ Ingersoll Street/Highway 401 WB Ramps	A	A	B	B
Culloden Line @ Highway 401 EB Ramps	A	A	B	B
Wallace Line @ Thomas Road	A^{+}	A^{+}	A^{+}	A^{+}
Wallace Line @ Robinson Road	A^{+}	A^{+}	B^{+}	B^{+}
Ingersoll Street @ King Street W	B^{+}	C^{+}	F^{+}	B
Ingersoll Street @ Thomas Street	B^{+}	B^{+}	F^{+}	A
Ingersoll Street @ Clarke Road	A^{+}	A^{+}	B^{+}	B^{+}
Ingersoll Street @ Thompson Road	B^{+}	B^{+}	F^{+}	F^{+}
Union Road @ Culloden Line	B^{+}	B^{+}	F^{+}	A
Union Road @ Curry Road	A^{+}	A^{+}	A^{+}	A^{+}
Harris Street @ Clarke Road	D^{+}	F^{+}	F^{+}	B
Harris Street/County Road 119 @ Highway 401 WB Ramps	A	A	B	B
Plank Line/Highway 19 @ Highway 401 EB Ramps	A	A	A	A
Plank Line/Highway 19 @ Curry Road	C^{+}	D^{+}	F^{+}	B

Notes: +Unsignalized Intersection - Critical Movement

Based on the transportation assessment that was carried out, it is concluded that:

- Existing Conditions: All study area intersections are currently operating at acceptable levels of service.
- Future Background Conditions: All study area intersections are forecast to operate at acceptable levels of service and v / c ratios under 2046 future background conditions, except for the following movement:
- Harris Street and Clarke Road - Eastbound Left.
- The eastbound left is projected to have a level of service F during the PM peak hour under future background conditions. However, no mitigation was proposed as the
movements delay (52.1 seconds) only exceed the threshold for becoming critical by 2.1 seconds and the movement has a low v / c ratio of 0.35 .
- Development Trip Generation: The South West Ingersoll Secondary Plan area is forecast to generate 3,379 trips during the PM peak hour. 703 trips will be generated by residential development, 1,278 trips will be generated by industrial development, and 522 trips will be generated by commercial development.
- Total Future Conditions: The following roadway network improvement will be required:
- Residential collector road between Clarke Road and 450 m south of Clarke Road - new road;
- Union Road west of Culloden Line - upgrade from local to collector;
- Union Road between Culloden Line and Curry Road - upgrade from local to collector;
- Curry Road between Union Road and Plank Line - upgrade from local to collector;
- Wallace Line / Thompson Road between Thomas Road and Ingersoll Street - upgrade from local to collector; and
- Clarke Road between Plank Line and 725m east of Plank Line - upgrade from rural to urban residential cross section.

The following intersections are expected to operate at acceptable levels of service and v / c ratios under 2046 total future conditions and do not require any mitigation strategies:

Culloden Road / Line @ Ingersoll Street / Highway 401 WB Ramps;
Culloden Line @ Highway 401 EB Ramps;
Wallace Line @ Thomas Road;
Wallace Line @ Robinson Road;
Ingersoll Street @ Clarke Road;
Union Road @ Curry Road;
Harris Street / County Road 119 @ Highway 401 WB Ramps; and
Plank Line / Highway 19 @ Highway 401 EB Ramps.

The remaining intersections will require intervention to operate at acceptable levels of service and v / c ratios under 2046 total future conditions.

- Ingersoll Street \& King Street West.
- Signals are warranted at this intersection. However, signalization alone does not improve the intersections operations to an acceptable level. It is recommended that the existing northbound shared through/left turn lane should be converted to a designated left turn lane, and the existing right turn lane should become a shared through/right turn lane. With signalization and lane reconfiguration, the intersection of Ingersoll Street and King Street West is expected to operate at an acceptable level (overall LOS B and a v/c ratio of 0.57).
- Ingersoll Street \& Thomas Street.
- Signals are warranted at this intersection. Signalization improves the intersection operations to an acceptable level (overall LOS A and a v/c ratio of 0.44).
- Ingersoll Street \& Thompson Road.
- Signals are not warranted at this intersection. To improve operations without signalization it is recommended that the eastbound approach be reconfigured to provide a principal right turn lane and an auxiliary left-turn lane. The eastbound right-turn lane will operate at a LOS C, and the eastbound left turn will continue to operate at a LOS F, however the v / c ratio would be reduced from 1.13 to 0.42 .
- Union Road \& Culloden Line.
- Signals are warranted at this intersection. However, signalization alone does not improve the intersections operations to an acceptable level. It is recommended that auxiliary leftturn lanes, both northbound and southbound, be constructed on Culloden Line. With signalization and the addition of the auxiliary turning lanes, the intersection of Union Road and Culloden Line is expected to operate at an acceptable level (overall LOS A and a v/c ratio of 0.50).
- Harris Street \& Clarke Road.
- Signals are warranted at this intersection. However, signalization alone does not improve the intersections operations to an acceptable level. It is recommended that an auxiliary westbound left-turn lane be constructed on Clarke Road and an auxiliary northbound right-turn lane be constructed on Harris Street. With signalization and the addition of the auxiliary turning lanes, the intersection of Harris Street and Clarke Road is expected to operate at an acceptable level (overall LOS B and a v/c ratio of 0.69).
- Plank Line \& Curry Road.
- Signals are warranted at this intersection. However, signalization alone does not improve the intersections operations to an acceptable level. It is recommended that an auxiliary eastbound left-turn lane be constructed on Curry Road and an auxiliary southbound right-turn lane be constructed on Plank Line. With signalization and the addition of the auxiliary turning lanes, the intersection of Harris Street and Clarke Road is expected to operate at an acceptable level (overall LOS B and a v/c ratio of 0.73).

The following rail network improvement will be required:

- Railway spur line off the CP rail line between Curry Road and Highway 401 - new rail spur.

The following railway crossing upgrades will be required:

- Curry Road - upgrade from passive crossing to active crossings with flashing lights and bells; King Street West - upgrade from active crossings with lights and bells to active crossings with flashing lights, bells and gates;
- Ingersoll Street - upgrade from active crossings with lights and bells to active crossings with flashing lights, bells and gates;
- Thomas Road (west of Wallace line) - upgrade from passive crossing to active crossings with flashing lights and bells; and
- Thomas Road (east of Wallace line) - upgrade from passive crossing to active crossings with flashing lights and bells.

Appendix A

Operations Reports: Existing Conditions

HCM Signalized Intersection Capacity Analysis
240: Culloden Line/Culloden Road \& Ingersoll Street S/Highway 401 WB Ramps
04/27/2023

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	4	「	${ }^{7}$	中 ${ }^{\text {a }}$		${ }^{4} 1$	F		${ }^{*}$	F	
Traffic Volume (vph)	35	120	190	45	70	85	75	165	30	135	215	15
Future Volume (vph)	35	120	190	45	70	85	75	165	30	135	215	15
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.2	7.2	4.0	7.2	7.2		7.4	7.4		7.4	7.4	
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95		0.97	1.00		1.00	1.00	
Frt	1.00	1.00	0.85	1.00	0.92		1.00	0.98		1.00	0.99	
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1626	1727	1392	1492	2977		2918	1840		1805	1824	
Flt Permitted	0.65	1.00	1.00	0.67	1.00		0.60	1.00		0.63	1.00	
Satd. Flow (perm)	1105	1727	1392	1058	2977		1855	1840		1188	1824	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	38	130	207	49	76	92	82	179	33	147	234	16
RTOR Reduction (vph)	0	0	0	0	75	0	0	10	0	0	4	0
Lane Group Flow (vph)	38	130	207	49	93	0	82	202	0	147	246	0
Heavy Vehicles (\%)	11\%	10\%	16\%	21\%	25\%	0\%	20\%	1\%	0\%	0\%	2\%	20\%
Turn Type	Perm	NA	Free	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4		Free	8			2			6		
Actuated Green, G (s)	8.2	8.2	43.6	8.2	8.2		20.8	20.8		20.8	20.8	
Effective Green, g (s)	8.2	8.2	43.6	8.2	8.2		20.8	20.8		20.8	20.8	
Actuated g/C Ratio	0.19	0.19	1.00	0.19	0.19		0.48	0.48		0.48	0.48	
Clearance Time (s)	7.2	7.2		7.2	7.2		7.4	7.4		7.4	7.4	
Vehicle Extension (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
Lane Grp Cap (vph)	207	324	1392	198	559		884	877		566	870	
v/s Ratio Prot		c0.08			0.03			0.11			c0.13	
v/s Ratio Perm	0.03		0.15	0.05			0.04			0.12		
v/c Ratio	0.18	0.40	0.15	0.25	0.17		0.09	0.23		0.26	0.28	
Uniform Delay, d1	14.9	15.5	0.0	15.1	14.8		6.2	6.7		6.8	6.9	
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.5	1.0	0.2	0.8	0.2		0.1	0.2		1.1	0.8	
Delay (s)	15.4	16.5	0.2	15.8	15.0		6.3	6.9		7.9	7.7	
Level of Service	B	B	A	B	B		A	A		A	A	
Approach Delay (s)		7.4			15.2			6.7			7.8	
Approach LOS		A			B			A			A	

Intersection Summary			
HCM 2000 Control Delay	8.7	HCM 2000 Level of Service	A
HCM 2000 Volume to Capacity ratio	0.32		14.6
Actuated Cycle Length (s)	43.6	Sum of lost time (s)	C
Intersection Capacity Utilization	65.7%	ICU Level of Service	
Analysis Period (min)	15		

Analysis Period (min)
15
c Critical Lane Group

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	${ }^{*}{ }^{*}$		${ }^{7}$	44	4	「
Traffic Volume (vph)	145	40	35	120	210	235
Future Volume (vph)	145	40	35	120	210	235
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.1		6.6	6.6	6.6	4.0
Lane Util. Factor	0.97		1.00	0.95	1.00	1.00
Frt	0.97		1.00	1.00	1.00	0.85
Flt Protected	0.96		0.95	1.00	1.00	1.00
Satd. Flow (prot)	3208		1337	3471	1792	1417
Flt Permitted	0.96		0.62	1.00	1.00	1.00
Satd. Flow (perm)	3208		867	3471	1792	1417
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	158	43	38	130	228	255
RTOR Reduction (vph)	31	0	0	0	0	0
Lane Group Flow (vph)	170	0	38	130	228	255
Heavy Vehicles (\%)	7\%	7\%	35\%	4\%	6\%	14\%
Turn Type	Prot		Perm	NA	NA	Free
Protected Phases	4			2	6	
Permitted Phases			2			Free
Actuated Green, G (s)	10.2		13.1	13.1	13.1	36.0
Effective Green, g (s)	10.2		13.1	13.1	13.1	36.0
Actuated g/C Ratio	0.28		0.36	0.36	0.36	1.00
Clearance Time (s)	6.1		6.6	6.6	6.6	
Vehicle Extension (s)	3.5		3.5	3.5	3.5	
Lane Grp Cap (vph)	908		315	1263	652	1417
v/s Ratio Prot	0.05			0.04	c0.13	
v/s Ratio Perm			0.04			c0.18
v/c Ratio	0.19		0.12	0.10	0.35	0.18
Uniform Delay, d1	9.8		7.6	7.6	8.3	0.0
Progression Factor	1.00		1.00	1.00	1.00	1.00
Incremental Delay, d2	0.1		0.2	0.0	0.4	0.3
Delay (s)	9.9		7.8	7.6	8.7	0.3
Level of Service	A		A	A	A	A
Approach Delay (s)	9.9			7.7	4.3	
Approach LOS	A			A	A	

Intersection Summary			
HCM 2000 Control Delay	6.3	HCM 2000 Level of Service	A
HCM 2000 Volume to Capacity ratio	0.32		12.7
Actuated Cycle Length (s)	36.0	Sum of lost time (s)	A
Intersection Capacity Utilization	43.8%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

	4	\rightarrow		\checkmark		4	4	\dagger	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			\uparrow	F'	\%	$\hat{1}$	
Sign Control		Stop			Stop			Stop			Stop	
Trafic Volume (vph)	40	95	20	15	105	135	30	190	35	115	130	25
Future Volume (vph)	40	95	20	15	105	135	30	190	35	115	130	25
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	43	103	22	16	114	147	33	207	38	125	141	27
Direction, Lane \#	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
Volume Total (vph)	168	277	240	38	125	168						
Volume Left (vph)	43	16	33	0	125	0						
Volume Right (vph)	22	147	0	38	0	27						
Hadj (s)	0.08	-0.30	0.14	-0.70	0.50	0.00						
Departure Headway (s)	6.1	5.6	6.5	5.6	6.8	6.3						
Degree Utilization, x	0.29	0.43	0.43	0.06	0.24	0.29						
Capacity (veh/h)	528	600	516	591	492	532						
Control Delay (s)	11.6	12.6	13.1	7.8	10.7	10.7						
Approach Delay (s)	11.6	12.6	12.4		10.7							
Approach LOS	B	B	B		B							
Intersection Summary												
Delay			11.8									
Level of Service			B									
Intersection Capacity Utilization			51.1\%		CU Level	f Service			A			
Analysis Period (min)			15									

	4	\rightarrow		1			4	\dagger	7	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			* 1			¢ \uparrow	
Traffic Volume (veh/h)	15	10	25	15	15	40	15	195	20	30	145	15
Future Volume (Veh/h)	15	10	25	15	15	40	15	195	20	30	145	15
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	16	11	27	16	16	43	16	212	22	33	158	16
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	421	498	87	432	495	117	174			234		
VC 1 , stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	421	498	87	432	495	117	174			234		
tC, single (s)	7.6	6.5	7.6	8.1	6.6	6.9	5.1			4.3		
$\mathrm{tC}, 2$ stage (s)												
tF (s)	3.6	4.0	3.6	3.8	4.1	3.3	2.7			2.3		
po queue free \%	96	98	97	96	96	95	99			97		
cM capacity (veh/h)	454	458	858	409	445	913	1112			1274		
Direction, Lane \#	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
Volume Total	54	75	122	128	112	95						
Volume Left	16	16	16	0	33	0						
Volume Right	27	43	0	22	0	16						
CSH	595	614	1112	1700	1274	1700						
Volume to Capacity	0.09	0.12	0.01	0.08	0.03	0.06						
Queue Length 95th (m)	2.4	3.3	0.4	0.0	0.6	0.0						
Control Delay (s)	11.7	11.7	1.2	0.0	2.5	0.0						
Lane LOS	B	B	A		A							
Approach Delay (s)	11.7	11.7	0.6		1.3							
Approach LOS	B	B										
Intersection Summary												
Average Delay			3.3									
Intersection Capacity Utilization			26.7\%	ICU Level of Service					A			
Analysis Period (min)			15									

	4			\downarrow			4	4			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			¢			\$			¢	
Traffic Volume (veh/h)	0	-	0	5	0	5	0	150	5	5	250	0
Future Volume (Veh/h)	0	0	0	5	0	5	0	150	5	5	250	0
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	0	5	0	5	0	163	5	5	272	0
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
VC, conflicting volume	452	450	272	448	448	166	272			168		
$\mathrm{vC1}$, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	452	450	272	448	448	166	272			168		
tC , single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
$\mathrm{tC}, 2$ stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	100	100	100	99	100	99	100			100		
cM capacity (veh/h)	516	506	772	523	507	884	1303			1422		
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	0	10	168	277								
Volume Left	0	5	0	5								
Volume Right	0	5	5	0								
cSH	1700	658	1303	1422								
Volume to Capacity	0.00	0.02	0.00	0.00								
Queue Length 95th (m)	0.0	0.4	0.0	0.1								
Control Delay (s)	0.0	10.6	0.0	0.2								
Lane LOS	A	B		A								
Approach Delay (s)	0.0	10.6	0.0	0.2								
Approach LOS	A	B										
Intersection Summary												
Average Delay			0.3									
Intersection Capacity Utilization			27.2\%	ICU Level of Service					A			
Analysis Period (min)			15									

Filename: 401 at Plank Line.j9
Path: c:\pw working directory\projects 2022\dillon_10hkv\dms88339
Report generation date: 2023-04-10 9:51:42 AM

„EASTBOUND - EXISTING, EB
 »WESTBOUND - EXISTING, WB

Summary of junction performance

	EB				
	Set ID	Queue (PCU)	Delay (s)	RFC	LOS
	EASTBOUND - EXISTING				
401EB - 401 EB - NB - SOUTH LEG	$\begin{aligned} & \text { AEB } \\ & \text { DEBEX } \end{aligned}$	0.5	3.86	0.32	A
401EB - 401 EB - SB - NORTH LEG		0.6	4.54	0.38	A
401EB - 401 EB - EB - WEST LEG		0.1	4.11	0.11	A

	WB				
	Set ID	Queue (PCU)	Delay (s)	RFC	LOS
	WESTBOUND - EXISTING				
401WB - 401 WB - NB - SOUTH LEG	AWB DWBEX	0.7	4.72	0.39	A
401WB - 401 WB - WB - EAST LEG		0.3	4.64	0.21	A
401WB - 401 WB - SB - NORTH LEG		0.4	4.01	0.27	A

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.
Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	PCU	PCU	perHour	s	$-\operatorname{Min}$	perMin

Fiows show original tratic demand (PCU/hr).
The junction diagram reflects the last run of Junctions.

Analysis Options

Vehicle length (\mathbf{m})	Calculate Queue Percentiles	Calculate detailed queueing delay	Calculate residual capacity	RFC Threshold	Average Delay threshold (s)	Queue threshold (PCU)
5.75				0.85	36.00	20.00

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
DEBEX	EXISTING	EB	PHF	$08: 00$	$09: 00$	15	\checkmark
DWBEX	EXISTING	WB	PHF	$08: 00$	$09: 00$	15	\checkmark

EASTBOUND - EXISTING, EB

Data Errors and Warnings
No errors or warnings

Analysis Set Details

ID	Name	Include in report	Use specific Demand Set(s)	Specific Demand Set(s)	Network flow scaling factor (\%)	Network capacity scaling factor (\%)
AEB	EASTBOUND	\checkmark	\checkmark	DEBEX, DEBFB, DEBTF	100.000	100.000

Junction Network

Junctions

Junction	Name	Junction type	Use circulating lanes	Arm order	Junction Delay (s)	Junction LOS
401EB	401 EB	Standard Roundabout		NB, WB, SB, EB	4.16	A

Junction Network Options

Driving side	Lighting
Right	Normal/unknown

Arms

Arms

Junction	Arm	Name	Description
	NB	SOUTH LEG	
401EB - 401 EB	WB	EAST LEG	
	SB	NORTH LEG	
	EB	WEST LEG	

Roundabout Geometry

Junction	Arm	V-Approach road half-width (m)	E-Entry width (m)	I' - Effective flare length (m)	R-Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit only
401EB-401 EB	NB - SOUTH LEG	5.10	5.50	18.4	55.0	46.0	8.0	
	WB - EAST LEG							\checkmark
	SB - NORTH LEG	3.75	5.50	10.6	44.0	46.0	23.0	
	EB - WEST LEG	4.75	4.80	1.0	50.0	46.0	11.0	

Bypass

Junction	Arm	Arm has bypass	Bypass utilisation (\%)
401EB - 401 EB	NB - SOUTH LEG	\checkmark	85
	WB - EAST LEG		
	SB - NORTH LEG		
	EB - WEST LEG	\checkmark	85

Slope / Intercept / Capacity

Arm Intercept Adjustments

Junction	Arm	Type	Reason	Percentage intercept adjustment (\%)
401EB - 401 EB	NB - SOUTH LEG	Percentage		85.00
	WB - EAST LEG			
	SB - NORTH LEG	Percentage		85.00
	EB - WEST LEG	Percentage		85.00

Roundabout Slope and Intercept used in model

Junction	Arm	Final slope	Final intercept (PCU/hr)
401EB - 401 EB	NB - SOUTH LEG	0.683	1561
	WB - EAST LEG		
	SB - NORTH LEG	0.612	1325
	EB - WEST LEG	0.631	1352

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time $(H H: m m)$	Finish time (HH:mm)	Time segment length (min)	Run automatically
DEBEX	EXISTING	EB	PHF	$08: 00$	$09: 00$	15	\checkmark

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCU Factor for a HV (PCU)
\checkmark	\checkmark	HV Percentages	2.00

Demand overview (Traffic)

Junction	Arm	Linked arm	Profile type	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
401EB - 401 EB	NB - SOUTH LEG		PHF	\checkmark	538	100.000
	WB - EAST LEG					
	SB - NORTH LEG		PHF	\checkmark	469	100.000
	EB - WEST LEG		PHF	\checkmark	279	100.000

Peak Hour Factor Data (Traffic)

Junction	Arm	Hourly volume (PCU/hr)	Peak hour factor	Peak time segment
401EB - 401 EB	NB - SOUTH LEG	538	0.92	SecondQuarter
	WB - EAST LEG			
	SB - NORTH LEG	469	0.92	SecondQuarter
	EB - WEST LEG	279	0.92	SecondQuarter

Origin-Destination Data

Demand (PCU/hr)

401EB - 401
EB

	To				
From	NB - SOUTH LEG				
		WB - EAST LEG	SB - NORTH LEG	EB - WEST LEG	
	NB - SOUTH LEG	0	137	401	0
	WB - EAST LEG	Exit-only	Exit-only	Exit-only	Exit-only
	SB - NORTH LEG	359	110	0	0
	EB - WEST LEG	211	0	68	0

Vehicle Mix

Heavy Vehicle Percentages

401EB - 401
EB

	To				
From	NB - SOUTH LEG				
	WB - EAST LEG	SB - NORTH LEG	EB - WEST LEG		
	NB - SOUTH LEG	0	9	4	0
	WB - EAST LEG	Exit-only	Exit-only	Exit-only	Exit-only
	SB - NORTH LEG	3	3	0	0
	EB - WEST LEG	8	0	4	0

Results

Results Summary for whole modelled period

Junction	Arm	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS	Average Demand (PCU/hr)	Total Junction Arrivals (PCU)
	NB - SOUTH LEG	0.32	3.86	0.5	A	538	
	WB - EAST LEG					422	
	SB - NORTH LEG	0.38	4.54	0.6	A	469	469
	EB - WEST LEG	0.11	4.11	0.1	A	279	100

WESTBOUND - EXISTING, WB

Data Errors and Warnings
No errors or warnings

Analysis Set Details

ID	Name	Include in report	Use specific Demand Set(s)	Specific Demand Set(s)	Network flow scaling factor (\%)	Network capacity scaling factor (\%)
AWB	WESTBOUND	\checkmark	\checkmark	DWBEX, DWBFB, DWBTF	100.000	100.000

Junction Network

Junctions

Junction	Name	Junction type	Use circulating lanes	Arm order	Junction Delay (s)	Junction LOS
401WB	401 WB	Standard Roundabout		NB, WB, SB, EB	4.48	A

Junction Network Options

Driving side	Lighting
Right	Normal/unknown

Arms

Arms

Junction	Arm	Name	Description
401WB - 401 WB	NB	SOUTH LEG	
	WB	EAST LEG	
	SB	NORTH LEG	
	EB	WEST LEG	

Roundabout Geometry

Junction	Arm	V-Approach road half-width (m)	E-Entry width (m)	I' - Effective flare length (m)	R-Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit only
401WB - 401 WB	NB - SOUTH LEG	3.75	5.50	8.4	41.0	46.0	22.0	
	WB - EAST LEG	4.75	4.75	0.0	45.0	46.0	11.0	
	SB - NORTH LEG	5.10	5.50	16.4	51.0	46.0	11.0	
	EB - WEST LEG							\checkmark

Bypass

Junction	Arm	Arm has bypass	Bypass utilisation (\%)
401WB - 401 WB	NB - SOUTH LEG		
	WB - EAST LEG	\checkmark	85
	SB - NORTH LEG	\checkmark	85
	EB - WEST LEG		

Slope / Intercept / Capacity

Arm Intercept Adjustments

Junction	Arm	Type	Reason	Percentage intercept adjustment (\%)
401WB - 401 WB	NB - SOUTH LEG	Percentage		85.00
	WB - EAST LEG	Percentage		85.00
	SB - NORTH LEG	Percentage		85.00
	EB - WEST LEG			

Roundabout Slope and Intercept used in model

Junction Arm Final slope Final intercept (PCU/hr) 401WB - 401 WB NB - SOUTH LEG 0.607 1302 WB - EAST LEG 0.627 1337 SB - NORTH LEG 0.675 1544 EB - WEST LEG

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
DWBEX	EXISTING	WB	PHF	$08: 00$	$09: 00$	15	\checkmark

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCU Factor for a HV (PCU)
\checkmark	\checkmark	HV Percentages	2.00

Demand overview (Traffic)

Junction	Arm	Linked arm	Profile type	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
401WB - 401 WB	NB - SOUTH LEG		PHF	\checkmark	469	100.000
	WB - EAST LEG		PHF	\checkmark	338	100.000
	SB - NORTH LEG		PHF	\checkmark	347	100.000
	EB - WEST LEG					

Peak Hour Factor Data (Traffic)

Junction	Arm	Hourly volume (PCU/hr)	Peak hour factor	Peak time segment
401WB - 401 WB	NB - SOUTH LEG	469	0.92	SecondQuarter
	WB - EAST LEG	338	0.92	SecondQuarter
	SB - NORTH LEG	347	0.92	SecondQuarter
	EB - WEST LEG			

Origin-Destination Data

Demand (PCU/hr)

401WB-401 WB

	To				
From	NB - SOUTH LEG				
	NB - SOUTH LEG	WB - EAST LEG	SB - NORTH LEG	EB - WEST LEG	
	WB - EAST LEG	0	0	235	234
	SB - NORTH LEG	173	0	165	0
	EB - WEST LEG	Exit-only	Exit-only	Exit-only	Exit-only

Vehicle Mix

Heavy Vehicle Percentages

401WB - 401
WB

	To				
From	NB - SOUTH LEG				
	WB - EAST LEG	SB - NORTH LEG	EB - WEST LEG		
	NB - SOUTH LEG	0	0	3	5
	WB - EAST LEG	4	0	1	0
	SB - NORTH LEG	2	0	0	0
	EB - WEST LEG	Exit-only	Exit-only	Exit-only	Exit-only

Results

Results Summary for whole modelled period

Junction	Arm	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS	Average Demand (PCU/hr)	Total Junction Arrivals (PCU)
	NB - SOUTH LEG	0.39	4.72	0.7	A	469	469
	WB - EAST LEG	0.21	4.64	0.3	A	338	198
	SB - NORTH LEG	0.27	4.01	0.4	A	347	304
	EB - WEST LEG						

Appendix B

Operations Reports: Future Background Conditions

Intersection Summary			A
HCM 2000 Control Delay	8.1	HCM 2000 Level of Service	12.7
HCM 2000 Volume to Capacity ratio	0.33		C
Actuated Cycle Length (s)	53.9	Sum of lost time (s)	
Intersection Capacity Utilization	64.6%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

	4			\checkmark		4	4	4	p	*	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\uparrow			\uparrow	「	${ }^{7}$	F	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	50	125	25	20	130	170	40	240	45	145	165	35
Future Volume (vph)	50	125	25	20	130	170	40	240	45	145	165	35
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	50	125	25	20	130	170	40	240	45	145	165	35
Direction, Lane \#	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
Volume Total (vph)	200	320	280	45	145	200						
Volume Left (vph)	50	20	40	0	145	0						
Volume Right (vph)	25	170	0	45	0	35						
Hadj (s)	0.08	-0.30	0.14	-0.70	0.50	-0.01						
Departure Headway (s)	6.8	6.1	7.1	6.2	7.4	6.9						
Degree Utilization, x	0.38	0.54	0.55	0.08	0.30	0.38						
Capacity (veh/h)	470	550	478	541	453	488						
Control Delay (s)	13.8	16.1	17.1	8.5	12.3	12.9						
Approach Delay (s)	13.8	16.1	15.9		12.7							
Approach LOS	B	C	C		B							
Intersection Summary												
Delay			14.7									
Level of Service			B									
Intersection Capacity Utilization			61.6\%	ICU Level of Service					B			
Analysis Period (min)			15									

Filename: 401 at Plank Line.j9
Path: c:\pw working directory\projects 2022\dillon_10hkv\dms88339
Report generation date: 2023-04-10 9:51:42 AM

„EASTBOUND - FUTURE BACKGROUND, EB »WESTBOUND - FUTURE BACKGROUND, WB

Summary of junction performance

	EB				
	Set ID	Queue (PCU)	Delay (s)	RFC	LOS
	EASTBOUND - FUTURE BACKGROUND				
401EB - 401 EB - NB - SOUTH LEG	$\begin{gathered} \text { AEB } \\ \text { DEBFB } \end{gathered}$	0.7	4.61	0.42	A
401EB - 401 EB - SB - NORTH LEG		1.0	5.46	0.49	A
401EB - 401 EB - EB - WEST LEG		0.2	4.70	0.15	A

	WB				
	Set ID	Queue (PCU)	Delay (s)	RFC	LOS
	WESTBOUND - FUTURE BACKGROUND				
401WB - 401 WB - NB - SOUTH LEG	AWB DWBFB	1.0	5.70	0.50	A
401WB - 401 WB - WB - EAST LEG		0.4	5.65	0.29	A
401WB - 401 WB - SB - NORTH LEG		0.6	4.91	0.36	A

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.
Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	PCU	PCU	perHour	s	$-\operatorname{Min}$	perMin

Fiows show original tratic demand (PCU/hr).
The junction diagram reflects the last run of Junctions.

Analysis Options

Vehicle length (\mathbf{m})	Calculate Queue Percentiles	Calculate detailed queueing delay	Calculate residual capacity	RFC Threshold	Average Delay threshold (s)	Queue threshold (PCU)
5.75				0.85	36.00	20.00

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time $(\mathbf{H H : m m})$	Finish time (HH:mm)	Time segment length (min)	Run automatically
DEBFB	FUTURE BACKGROUND	EB	PHF	$08: 00$	$09: 00$	15	\checkmark
DWBFB	FUTURE BACKGROUND	WB	PHF	$08: 00$	$09: 00$	15	\checkmark

EASTBOUND - FUTURE BACKGROUND, EB

Data Errors and Warnings
No errors or warnings

Analysis Set Details

ID	Name	Include in report	Use specific Demand Set(s)	Specific Demand Set(s)	Network flow scaling factor (\%)	Network capacity scaling factor (\%)
AEB	EASTBOUND	\checkmark	\checkmark	DEBEX, DEBFB, DEBTF	100.000	100.000

Junction Network

Junctions

Junction	Name	Junction type	Use circulating lanes	Arm order	Junction Delay (s)	Junction LOS
401EB	401 EB	Standard Roundabout		NB, WB, SB, EB	4.94	A

Junction Network Options

Driving side	Lighting
Right	Normal/unknown

Arms

Arms

Junction	Arm	Name	Description
401EB - 401 EB	NB	SOUTH LEG	
	WB	EAST LEG	
	SB	NORTH LEG	
	EB	WEST LEG	

Roundabout Geometry

Junction	Arm	V-Approach road half-width (m)	E-Entry width (m)	I' - Effective flare length (m)	R-Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit only
401EB-401 EB	NB - SOUTH LEG	5.10	5.50	18.4	55.0	46.0	8.0	
	WB - EAST LEG							\checkmark
	SB - NORTH LEG	3.75	5.50	10.6	44.0	46.0	23.0	
	EB - WEST LEG	4.75	4.80	1.0	50.0	46.0	11.0	

Bypass

Junction	Arm	Arm has bypass	Bypass utilisation (\%)
401EB - 401 EB	NB - SOUTH LEG	\checkmark	85
	WB - EAST LEG		
	SB - NORTH LEG		
	EB - WEST LEG	\checkmark	85

Slope / Intercept / Capacity

Arm Intercept Adjustments

Junction	Arm	Type	Reason	Percentage intercept adjustment (\%)
401EB - 401 EB	NB - SOUTH LEG	Percentage		85.00
	WB - EAST LEG			
	SB - NORTH LEG	Percentage		85.00
	EB - WEST LEG	Percentage		85.00

Roundabout Slope and Intercept used in model

Junction	Arm	Final slope	Final intercept (PCU/hr)
401EB - 401 EB	NB - SOUTH LEG	0.683	1561
	WB - EAST LEG		
	SB - NORTH LEG	0.612	1325
	EB - WEST LEG	0.631	1352

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time $(H H: m m)$	Finish time $(H H: m m)$	Time segment length (min)	Run automatically
DEBFB	FUTURE BACKGROUND	EB	PHF	$08: 00$	$09: 00$	15	\checkmark

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCU Factor for a HV (PCU)
\checkmark	\checkmark	HV Percentages	2.00

Demand overview (Traffic)

Junction	Arm	Linked arm	Profile type	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
401EB - 401 EB	NB - SOUTH LEG		PHF	\checkmark	683	100.000
	WB - EAST LEG					
	SB - NORTH LEG		PHF	\checkmark	596	100.000
	EB - WEST LEG		PHF	\checkmark	354	100.000

Peak Hour Factor Data (Traffic)

Junction	Arm	Hourly volume (PCU/hr)	Peak hour factor	Peak time segment
401EB - 401 EB	NB - SOUTH LEG	683	0.92	SecondQuarter
	WB - EAST LEG			
	SB - NORTH LEG	596	0.92	SecondQuarter
	EB - WEST LEG	354	0.92	SecondQuarter

Origin-Destination Data

Demand (PCU/hr)

401EB - 401
EB

	To				
From	NB - SOUTH LEG				
	NB - SOUTH LEG	WB - EAST LEG	SB - NORTH LEG	EB - WEST LEG	
	WB - EAST LEG	0	174	509	0
	SB - NORTH LEG	456	Exit-only	Exit-only	Exit-only
	EB - WEST LEG	268	140	0	0

Vehicle Mix

Heavy Vehicle Percentages

401EB - 401
EB

	To				
From	NB - SOUTH LEG				
	WB - EAST LEG	SB - NORTH LEG	EB - WEST LEG		
	NB - SOUTH LEG	0	9	4	0
	WB - EAST LEG	Exit-only	Exit-only	Exit-only	Exit-only
	SB - NORTH LEG	3	3	0	0
	EB - WEST LEG	8	0	4	0

Results

Results Summary for whole modelled period

Junction	Arm	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS	Average Demand (PCU/hr)	Total Junction Arrivals (PCU)
	NB - SOUTH LEG	0.42	4.61	0.7	A	683	
	WB - EAST LEG					535	
	SB - NORTH LEG	0.49	5.46	1.0	A	596	596
	EB - WEST LEG	0.15	4.70	0.2	A	354	126

WESTBOUND - FUTURE BACKGROUND, WB

Data Errors and Warnings
No errors or warnings

Analysis Set Details

ID	Name	Include in report	Use specific Demand Set(s)	Specific Demand Set(s)	Network flow scaling factor (\%)	Network capacity scaling factor (\%)
AWB	WESTBOUND	\checkmark	\checkmark	DWBEX, DWBFB, DWBTF	100.000	100.000

Junction Network

Junctions

Junction	Name	Junction type	Use circulating lanes	Arm order	Junction Delay (s)	Junction LOS
401WB	401 WB	Standard Roundabout		NB, WB, SB, EB	5.45	A

Junction Network Options

Driving side	Lighting
Right	Normal/unknown

Arms

Arms

Junction	Arm	Name	Description
401WB - 401 WB	NB	SOUTH LEG	
	WB	EAST LEG	
	SB	NORTH LEG	
	EB	WEST LEG	

Roundabout Geometry

Junction	Arm	V - Approach road half-width (m)	E-Entry width (m)	I' - Effective flare length (m)	R-Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit only
401WB - 401 WB	NB - SOUTH LEG	3.75	5.50	8.4	41.0	46.0	22.0	
	WB - EAST LEG	4.75	4.75	0.0	45.0	46.0	11.0	
	SB - NORTH LEG	5.10	5.50	16.4	51.0	46.0	11.0	
	EB - WEST LEG							\checkmark

Bypass

Junction	Arm	Arm has bypass	Bypass utilisation (\%)
401WB - 401 WB	NB - SOUTH LEG		
	WB - EAST LEG	\checkmark	85
	SB - NORTH LEG	\checkmark	85
	EB - WEST LEG		

Slope / Intercept / Capacity

Arm Intercept Adjustments

Junction	Arm	Type	Reason	Percentage intercept adjustment (\%)
401WB - 401 WB	NB - SOUTH LEG	Percentage		85.00
	WB - EAST LEG	Percentage		85.00
	SB - NORTH LEG	Percentage		85.00
	EB - WEST LEG			

Roundabout Slope and Intercept used in model

Junction Arm Final slope Final intercept (PCU/hr) 401WB - 401 WB NB - SOUTH LEG 0.607 1302 WB - EAST LEG 0.627 1337 SB - NORTH LEG 0.675 1544 EB - WEST LEG

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
DWBFB	FUTURE BACKGROUND	WB	PHF	$08: 00$	$09: 00$	15	\checkmark

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCU Factor for a HV (PCU)
\checkmark	\checkmark	HV Percentages	2.00

Demand overview (Traffic)

Junction	Arm	Linked arm	Profile type	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
401WB - 401 WB	NB - SOUTH LEG		PHF	\checkmark	595	100.000
	WB - EAST LEG		PHF	\checkmark	430	100.000
	SB - NORTH LEG		PHF	\checkmark	441	100.000
	EB - WEST LEG					

Peak Hour Factor Data (Traffic)

Junction	Arm	Hourly volume (PCU/hr)	Peak hour factor	Peak time segment
401WB - 401 WB	NB - SOUTH LEG	595	0.92	SecondQuarter
	WB - EAST LEG	430	0.92	SecondQuarter
	SB - NORTH LEG	441	0.92	SecondQuarter
	EB - WEST LEG			

Origin-Destination Data

Demand (PCU/hr)

401WB-401
WB

	To				
From	NB - SOUTH LEG				
	NB - SOUTH LEG	WB - EAST LEG	SB - NORTH LEG	EB - WEST LEG	
	WB - EAST LEG	0	0	298	297
	SB - NORTH LEG	370	0	210	0
	EB - WEST LEG	Exit-only	Exit-only	Exit-only	Exit-only

Vehicle Mix

Heavy Vehicle Percentages

401WB - 401
WB

	To				
From	NB - SOUTH LEG				
	WB - EAST LEG	SB - NORTH LEG	EB - WEST LEG		
	NB - SOUTH LEG	0	0	3	5
	WB - EAST LEG	4	0	1	0
	SB - NORTH LEG	2	0	0	0
	EB - WEST LEG	Exit-only	Exit-only	Exit-only	Exit-only

Results

Results Summary for whole modelled period

Junction	Arm	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS	Average Demand (PCU/hr)	Total Junction Arrivals (PCU)
	NB - SOUTH LEG	0.50	5.70	1.0	A	595	595
	WB - EAST LEG	0.29	5.65	0.4	A	430	252
	SB - NORTH LEG	0.36	4.91	0.6	A	441	386
	EB - WEST LEG						

Appendix C

Operations Reports: Total Future Conditions Unmitigated

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	${ }^{*}{ }^{*}{ }^{\text {a }}$		${ }^{7}$	44	4	「
Traffic Volume (vph)	280	130	95	555	635	445
Future Volume (vph)	280	130	95	555	635	445
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.1		6.6	6.6	6.6	4.0
Lane Util. Factor	0.97		1.00	0.95	1.00	1.00
Frt	0.95		1.00	1.00	1.00	0.85
Flt Protected	0.97		0.95	1.00	1.00	1.00
Satd. Flow (prot)	3253		1556	3574	1863	1482
Flt Permitted	0.97		0.22	1.00	1.00	1.00
Satd. Flow (perm)	3253		368	3574	1863	1482
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	280	130	95	555	635	445
RTOR Reduction (vph)	84	0	0	0	0	0
Lane Group Flow (vph)	326	0	95	555	635	445
Heavy Vehicles (\%)	5\%	3\%	16\%	1\%	2\%	9\%
Turn Type	Prot		Perm	NA	NA	Free
Protected Phases	4			2	6	
Permitted Phases			2			Free
Actuated Green, G (s)	20.1		24.0	24.0	24.0	56.8
Effective Green, g (s)	20.1		24.0	24.0	24.0	56.8
Actuated g/C Ratio	0.35		0.42	0.42	0.42	1.00
Clearance Time (s)	6.1		6.6	6.6	6.6	
Vehicle Extension (s)	3.5		3.5	3.5	3.5	
Lane Grp Cap (vph)	1151		155	1510	787	1482
v/s Ratio Prot	0.10			0.16	c0.34	
v/s Ratio Perm			0.26			c0.30
v/c Ratio	0.28		0.61	0.37	0.81	0.30
Uniform Delay, d1	13.2		12.8	11.2	14.4	0.0
Progression Factor	1.00		1.00	1.00	1.00	1.00
Incremental Delay, d2	0.2		7.3	0.2	6.2	0.5
Delay (s)	13.3		20.1	11.4	20.6	0.5
Level of Service	B		C	B	C	A
Approach Delay (s)	13.3			12.7	12.3	
Approach LOS	B			B	B	

Intersection Summary			
HCM 2000 Control Delay	12.6	HCM 2000 Level of Service	B
HCM 2000 Volume to Capacity ratio	0.62		12.7
Actuated Cycle Length (s)	56.8	Sum of lost time (s)	E
Intersection Capacity Utilization	82.8%	ICU Level of Service	
Analysis Period (min)	15		
C Critical Lane Group			

	4	\rightarrow	7	7	4	4	4	\dagger	p	\pm	$\frac{1}{\dagger}$	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\uparrow			\uparrow	「	${ }^{7}$	\hat{F}	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	90	125	140	20	135	170	210	390	45	145	320	95
Future Volume (vph)	90	125	140	20	135	170	210	390	45	145	320	95
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	90	125	140	20	135	170	210	390	45	145	320	95
Direction, Lane \#	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
Volume Total (vph)	355	325	600	45	145	415						
Volume Left (vph)	90	20	210	0	145	0						
Volume Right (vph)	140	170	0	45	0	95						
Hadj (s)	-0.12	-0.29	0.21	-0.70	0.50	-0.11						
Departure Headway (s)	8.8	8.8	9.3	8.3	9.5	8.9						
Degree Utilization, x	0.87	0.80	1.54	0.10	0.38	1.03						
Capacity (veh/h)	394	397	402	425	374	415						
Control Delay (s)	48.3	38.8	279.9	11.1	17.1	81.4						
Approach Delay (s)	48.3	38.8	261.1		64.8							
Approach LOS	E	E	F		F							
Intersection Summary												
Delay			124.4									
Level of Service			F									
Intersection Capacity Utilization			106.8\%		ICU Level	Service			G			
Analysis Period (min)			15									

Filename: 401 at Plank Line.j9
Path: c:\pw working directory\projects 2022\dillon_10hkvldms88339
Report generation date: 2023-04-10 9:51:42 AM

"EASTBOUND - TOTAL FUTURE, EB „WESTBOUND - TOTAL FUTURE, WB

Summary of junction performance

	EB				
	Set ID	Queue (PCU)	Delay (s)	RFC	LOS
	EASTBOUND - TOTAL FUTURE				
401EB - 401 EB - NB - SOUTH LEG	$\begin{aligned} & \text { AEB } \\ & \text { DEBTF } \end{aligned}$	2.1	8.80	0.68	A
401EB - 401 EB - SB - NORTH LEG		3.2	11.67	0.77	B
401EB - 401 EB - EB - WEST LEG		0.4	7.47	0.30	A

	WB					
	Set ID	Queue (PCU)	Delay (s)	RFC	LOS	
	WESTBOUND - TOTAL FUTURE					
	U01WB - 401 WB - NB - SOUTH LEG		3.3	12.01	0.77	B
401WB - 401 WB - WB - EAST LEG	AWB	DWBTF	1.4	12.52	0.59	B
401WB - 401 WB - SB - NORTH LEG		1.7	9.28	0.63	A	

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.
Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	PCU	PCU	perHour	s	$-\operatorname{Min}$	perMin

Fiows show original tratic demand (PCU/hr).
The junction diagram reflects the last run of Junctions.

Analysis Options

Vehicle length (\mathbf{m})	Calculate Queue Percentiles	Calculate detailed queueing delay	Calculate residual capacity	RFC Threshold	Average Delay threshold (s)	Queue threshold (PCU)
5.75				0.85	36.00	20.00

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
DEBTF	TOTAL FUTURE	EB	PHF	$08: 00$	$09: 00$	15	\checkmark
DWBTF	TOTAL FUTURE	WB	PHF	$08: 00$	$09: 00$	15	\checkmark

EASTBOUND - TOTAL FUTURE, EB

Data Errors and Warnings
No errors or warnings

Analysis Set Details

ID	Name	Include in report	Use specific Demand Set(s)	Specific Demand Set(s)	Network flow scaling factor (\%)	Network capacity scaling factor (\%)
AEB	EASTBOUND	\checkmark	\checkmark	DEBEX, DEBFB, DEBTF	100.000	100.000

Junction Network

Junctions

Junction	Name	Junction type	Use circulating lanes	Arm order	Junction Delay (s)	Junction LOS
401EB	401 EB	Standard Roundabout		NB, WB, SB, EB	9.65	A

Junction Network Options

Driving side	Lighting
Right	Normal/unknown

Arms

Arms

Junction	Arm	Name	Description
	NB	SOUTH LEG	
401EB - 401 EB	WB	EAST LEG	
	SB	NORTH LEG	
	EB	WEST LEG	

Roundabout Geometry

Junction	Arm	V-Approach road half-width (m)	E-Entry width (m)	I' - Effective flare length (m)	R-Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit only
401EB-401 EB	NB - SOUTH LEG	5.10	5.50	18.4	55.0	46.0	8.0	
	WB - EAST LEG							\checkmark
	SB - NORTH LEG	3.75	5.50	10.6	44.0	46.0	23.0	
	EB - WEST LEG	4.75	4.80	1.0	50.0	46.0	11.0	

Bypass

Junction	Arm	Arm has bypass	Bypass utilisation (\%)
401EB - 401 EB	NB - SOUTH LEG	\checkmark	85
	WB - EAST LEG		
	SB - NORTH LEG		
	EB - WEST LEG	\checkmark	85

Slope / Intercept / Capacity

Arm Intercept Adjustments

Junction	Arm	Type	Reason	Percentage intercept adjustment (\%)
401EB - 401 EB	NB - SOUTH LEG	Percentage		85.00
	WB - EAST LEG			
	SB - NORTH LEG	Percentage		85.00
	EB - WEST LEG	Percentage		85.00

Roundabout Slope and Intercept used in model

Junction	Arm	Final slope	Final intercept (PCU/hr)
401EB - 401 EB	NB - SOUTH LEG	0.683	1561
	WB - EAST LEG		
	SB - NORTH LEG	0.612	1325
	EB - WEST LEG	0.631	1352

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time $(H H: m m)$	Finish time (HH:mm)	Time segment length (min)	Run automatically
DEBTF	TOTAL FUTURE	EB	PHF	$08: 00$	$09: 00$	15	\checkmark

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCU Factor for a HV (PCU)
\checkmark	\checkmark	HV Percentages	2.00

Demand overview (Traffic)

Junction	Arm	Linked arm	Profile type	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
401EB - 401 EB	NB - SOUTH LEG		PHF	\checkmark	1067	100.000
	WB - EAST LEG					
	SB - NORTH LEG		PHF	\checkmark	939	100.000
	EB - WEST LEG		PHF	\checkmark	450	100.000

Peak Hour Factor Data (Traffic)

Junction	Arm	Hourly volume (PCU/hr)	Peak hour factor	Peak time segment
401EB - 401 EB	NB - SOUTH LEG	1067	0.92	SecondQuarter
	WB - EAST LEG			
	SB - NORTH LEG	939	0.92	SecondQuarter
	EB - WEST LEG	450	0.92	SecondQuarter

Origin-Destination Data

Demand (PCU/hr)

401EB - 401
EB

	To				
From	NB - SOUTH LEG				
		WB - EAST LEG	SB - NORTH LEG	EB - WEST LEG	
	NB - SOUTH LEG	0	293	774	0
	WB - EAST LEG	Exit-only	Exit-only	Exit-only	Exit-only
	SB - NORTH LEG	741	198	0	0
	EB - WEST LEG	301	0	149	0

Vehicle Mix

Heavy Vehicle Percentages

401EB - 401
EB

	To				
From	NB - SOUTH LEG				
	WB - EAST LEG	SB - NORTH LEG	EB - WEST LEG		
	NB - SOUTH LEG	0	6	3	0
	WB - EAST LEG	Exit-only	Exit-only	Exit-only	Exit-only
	SB - NORTH LEG	2	2	0	0
	EB - WEST LEG	7	0	3	0

Results

Results Summary for whole modelled period

Junction	Arm	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS	Average Demand (PCU/hr)	Total Junction Arrivals (PCU)
	NB - SOUTH LEG	0.68	8.80	2.1	A	1067	
	WB - EAST LEG					818	
	SB - NORTH LEG	0.77	11.67	3.2	B	939	939
	EB - WEST LEG	0.30	7.47	0.4	A	450	194

WESTBOUND - TOTAL FUTURE, WB

Data Errors and Warnings
No errors or warnings
Analysis Set Details

ID	Name	Include in report	Use specific Demand Set(s)	Specific Demand Set(s)	Network flow scaling factor (\%)	Network capacity scaling factor (\%)
AWB	WESTBOUND	\checkmark	\checkmark	DWBEX, DWBFB, DWBTF	100.000	100.000

Junction Network

Junctions

Junction	Name	Junction type	Use circulating lanes	Arm order	Junction Delay (s)	Junction LOS
401WB	401 WB	Standard Roundabout		NB, WB, SB, EB	11.31	B

Junction Network Options

Driving side	Lighting
Right	Normal/unknown

Arms

Arms

Junction	Arm	Name	Description
401WB - 401 WB	NB	SOUTH LEG	
	WB	EAST LEG	
	SB	NORTH LEG	
	EB	WEST LEG	

Roundabout Geometry

Junction	Arm	V-Approach road half-width (m)	E-Entry width (m)	I' - Effective flare length (m)	R-Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit only
401WB - 401 WB	NB - SOUTH LEG	3.75	5.50	8.4	41.0	46.0	22.0	
	WB - EAST LEG	4.75	4.75	0.0	45.0	46.0	11.0	
	SB - NORTH LEG	5.10	5.50	16.4	51.0	46.0	11.0	
	EB - WEST LEG							\checkmark

Bypass

Junction	Arm	Arm has bypass	Bypass utilisation (\%)
401WB - 401 WB	NB - SOUTH LEG		
	WB - EAST LEG	\checkmark	85
	SB - NORTH LEG	\checkmark	85
	EB - WEST LEG		

Slope / Intercept / Capacity

Arm Intercept Adjustments

Junction	Arm	Type	Reason	Percentage intercept adjustment (\%)
401WB - 401 WB	NB - SOUTH LEG	Percentage		85.00
	WB - EAST LEG	Percentage		85.00
	SB - NORTH LEG	Percentage		85.00
	EB - WEST LEG			

Roundabout Slope and Intercept used in model

Junction Arm Final slope Final intercept (PCU/hr) 401WB - 401 WB NB - SOUTH LEG 0.607 1302 WB - EAST LEG 0.627 1337 SB - NORTH LEG 0.675 1544 EB - WEST LEG

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
DWBTF	TOTAL FUTURE	WB	PHF	$08: 00$	$09: 00$	15	\checkmark

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCU Factor for a HV (PCU)
\checkmark	\checkmark	HV Percentages	2.00

Demand overview (Traffic)

Junction	Arm	Linked arm	Profile type	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
401WB - 401 WB	NB - SOUTH LEG		PHF	\checkmark	923	100.000
	WB - EAST LEG		PHF	\checkmark	649	100.000
	SB - NORTH LEG		PHF	\checkmark	701	100.000
	EB - WEST LEG					

Peak Hour Factor Data (Traffic)

Junction	Arm	Hourly volume (PCU/hr)	Peak hour factor	Peak time segment
401WB - 401 WB	NB - SOUTH LEG	923	0.92	SecondQuarter
	WB - EAST LEG	649	0.92	SecondQuarter
	SB - NORTH LEG	701	0.92	SecondQuarter
	EB - WEST LEG			

Origin-Destination Data

Demand (PCU/hr)

401WB - 401 WB

	To				
From	NB - SOUTH LEG				
	NB - SOUTH LEG	WB - EAST LEG	SB - NORTH LEG	EB - WEST LEG	
	WB - EAST LEG	0	0	593	330
	SB - NORTH LEG	541	0	308	0
	EB - WEST LEG	Exit-only	Exit-only	Exit-only	Exit-only

Vehicle Mix

Heavy Vehicle Percentages

401WB - 401
WB

	To				
From	NB - SOUTH LEG				
	WB - EAST LEG	SB - NORTH LEG	EB - WEST LEG		
	NB - SOUTH LEG	0	0	2	5
	WB - EAST LEG	3	0	0	0
	SB - NORTH LEG	1	0	0	0
	EB - WEST LEG	Exit-only	Exit-only	Exit-only	Exit-only

Results

Results Summary for whole modelled period

Junction	Arm	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS	Average Demand (PCU/hr)	Total Junction Arrivals (PCU)
	WB - EAST LEG	0.59	12.52	12.01	3.3	B	923
	SB - NORTH LEG	0.63	9.28	1.4	B	649	387
	EB - WEST LEG			1.7	A	701	614

Appendix D

OTM Signal Warrants

Traffic Signal Warrant Analysis
MTO Method (Ontario Traffic Manual, Book 12)
2046 Future Total

Main street direction Main street cross-section Roadway environment
"T" intersection?

North/South
2+ lanes
Free flow
No

Time Period	Major Street						Minor Street				
	Ingersoll Street						Thomas Road				
	Northbound			Southbound			Eastbound			Westbound	
	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through
PM Peak	125	480	25	35	340	125	105	15	95	20	20
Average Hourly Volume	63	240	13	18	170	63	53	8	48	10	10

Justification 7 - OTM Book 12

Warrant 1 - Minimum Vehicular Volume

$1 \mathbf{1 A}$	Approach Lanes	1		$2+$	
	Flow Conditions	Free	Restricted	Free	Restricted
	All Approaches	480	720	600	900
$\mathbf{1 B}$	Approach Lanes	1		$2+$	
	Flow Conditions	Free	Restricted	Free	Restricted
	All Approaches	120	170	120	170

Average Hourly Volume	
718	
\% Satisfied	120%

Warrant 2 - Delay to Cross Traffic

2A	Approach Lanes	1		2+		Average Hourly Volume	
	Flow Conditions	Free	Restricted	Free	Restricted	565	
	All Approaches	480	720	600	900	\% Satisfied	94\%
2B	Approach Lanes	1		2+		Average Hourly Volume	
	Flow Conditions	Free	Restricted	Free	Restricted	80	
	All Approaches	50	75	120	170	\% Satisfied	67\%

Traffic Signal Warrant Analysis
MTO Method (Ontario Traffic Manual, Book 12)
2046 Future Total

Main street direction	North/South	Major Street	Plank Line
Main street cross-section	1 lane	Minor Street	Curry Road
Roadway environment	Free flow		
"T" intersection?	No		

Time Period	Major Street						Minor Street				
	Plank Line						Curry Road				
	Northbound			Southbound			Eastbound			Westbound	
	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through
PM Peak	80	815	0	5	790	245	240	10	105	5	10
Average Hourly Volume	40	408	0	3	395	123	120	5	53	3	5

Justification 7 - OTM Book 12
Warrant 1 - Minimum Vehicular Volume

1A	Approach Lanes	1		$2+$	
	Flow Conditions	Free	Restricted	Free	Restricted
	All Approaches	480	720	600	900

Average Hourly Volume	
1158	
\% Satisfied	241%

1B	Approach Lanes	1		2+		Average Hourly Volume	
	Flow Conditions	Free	Restricted	Free	Restricted	190	
	All Approaches	120	170	120	170	\% Satisfied	158\%

2A	Approach Lanes	1		$2+$	
	Flow Conditions	Free	Restricted	Free	Restricted
	All Approaches	480	720	600	900

Average Hourly Volume	
968	
\% Satisfied	202%

2B	Approach Lanes	1		$2+$	
	Flow Conditions	Free	Restricted	Free	Restricted
	All Approaches	50	75	120	170

Average Hourly Volume	
133	
\% Satisfied	265%

Signal Warranted

Traffic Signal Warrant Analysis
MTO Method (Ontario Traffic Manual, Book 12)
2046 Future Total

Main street direction Main street cross-section Roadway environment " T " intersection?	North/South 1 lane Free flow Yes			Major Street Minor Street		Ingersoll Street Thompson Road						
	Major Street						Minor Street					
	Ingersoll Street						Thompson Road					
	Northbound			Southbound			Eastbound			Westbound		
Time Period	Left	Through	Right									
PM Peak	250	475			560	15	45		340			
Average Hourly Volume	125	238	0	0	280	8	23	0	170	0	0	0

Justification 7 - OTM Book 12

Warrant 1 - Minimum Vehicular Volume

1A	Approach Lanes	1		2+		Average Hourly Volume	
	Flow Conditions	Free	Restricted	Free	Restricted	843	
	All Approaches	480	720	600	900	\% Satisfied	176\%
1B	Approach Lanes	1		2+		Average Hourly Volume	
	Flow Conditions	Free	Restricted	Free	Restricted	193	
	All Approaches	180	255	180	255	\% Satisfied	107\%

Warrant 2 - Delay to Cross Traffic							
2A	Approach Lanes	1		2+		Average Hourly Volume	
	Flow Conditions	Free	Restricted	Free	Restricted	650	
	All Approaches	480	720	600	900	\% Satisfied	135\%
2B	Approach Lanes	1		2+		Average Hourly Volume	
	Flow Conditions	Free	Restricted	Free	Restricted	2	
	All Approaches	50	75	120	170	\% Satisfied	45\%

Traffic Signal Warrant Analysis

MTO Method (Ontario Traffic Manual, Book 12)
2046 Future Tota

Main street direction	North/South	Major Street	Culloden Line
Main street cross-section	1 lane	Minor Street	Union Road
Roadway environment	Free flow		
"T" intersection?	No		

Time Period	Major Street						Minor Street					
	Culloden Line						Union Road					
	Northbound			Southbound			Eastbound			Westbound		
	Left	Through	Right									
PM Peak	40	390	75	190	490	85	85	15	40	75	15	180
Average Hourly Volume	20	195	38	95	245	43	43	8	20	38	8	90

Justification 7 - OTM Book 12

Warrant 1 - Minimum Vehicular Volume

1A	Approach Lanes	1		2+		Average Hourly Volume	
	Flow Conditions	Free	Restricted	Free	Restricted	840	
	All Approaches	480	720	600	900	\% Satisfied	175\%
1B	Approach Lanes	1		2+		Average Hourly Volume	
	Flow Conditions	Free	Restricted	Free	Restricted	205	
	All Approaches	120	170	120	170	\% Satisfied	171\%

Warrant 2 - Delay to Cross Traffic							
2A	Approach Lanes	1		2+		Average Hourly Volume	
	Flow Conditions	Free	Restricted	Free	Restricted	635	
	All Approaches	480	720	600	900	\% Satisfied	132\%
2B	Approach Lanes	1		2+		Average Hourly Volume	
	Flow Conditions	Free	Restricted	Free	Restricted	95	
	All Approaches	50	75	120	170	\% Satisfied	190\%

Traffic Signal Warrant Analysis
MTO Method (Ontario Traffic Manual, Book 12)
2046 Future Total

Justification 7 - OTM Book 12
Warrant 1 - Minimum Vehicular Volume

1A	Approach Lanes	1		2+		Average Hourly Volume	
	Flow Conditions	Free	Restricted	Free	Restricted	106	
	All Approaches	480	720	600	900	\% Satisfied	178\%

1B	Approach Lanes	1		2+		Average Hourly Volume	
	Flow Conditions	Free	Restricted	Free	Restricted	325	
	All Approaches	120	170	120	170	\% Satisfied	271\%

Warrant 2 - Delay to Cross Traffic

2A	Approach Lanes	1		$2+$	
	Flow Conditions	Free	Restricted	Free	Restricted
	All Approaches	480	720	600	900

Average Hourly Volume	
743	
\% Satisfied	124%

2B	Approach Lanes	1		$2+$	
	Flow Conditions	Free	Restricted	Free	Restricted
	All Approaches	50	75	120	170

Average Hourly Volume	
215	
\% Satisfied	179%

Signal Warranted

Traffic Signal Warrant Analysis
MTO Method (Ontario Traffic Manual, Book 12)
2046 Future Total

Main street direction	North/South	Major Street	Ingersoll Street
Main street cross-section	2+ lanes	Minor Street	King St W
Roadway environment	Free flow		

T" intersection? No
$\begin{array}{ll}\text { Major Street } & \text { Ingersoll Street } \\ \text { Minor Street } & \text { King St W }\end{array}$

Time Period	Major Street						Minor Street					
	Ingersoll Street						King St W					
	Northbound			Southbound			Eastbound			Westbound		
	Left	Through	Right									
PM Peak	210	390	45	145	320	95	90	125	140	20	135	170
Average Hourly Volume	105	195	23	73	160	48	45	63	70	10	68	85

Justification 7 - OTM Book 12

Warrant 1 - Minimum Vehicular Volume

1A	Approach Lanes	1		$2+$	
	Flow Conditions	Free	Restricted	Free	Restricted
	All Approaches	480	720	600	900

Average Hourly Volume	
943	
\% Satisfied	157%

1B	Approach Lanes	1		$2+$	
	Flow Conditions	Free	Restricted	Free	Restricted
	All Approaches	120	170	120	170

Average Hourly Volume	
340	
\% Satisfied	283%

Warrant 2 - Delay to Cross Traffic

24	Approach Lanes	1		$2+$	
	Flow Conditions	Free	Restricted	Free	Restricted
	All Approaches	480	720	600	900

Average Hourly Volume	
603	
\% Satisfied	100%

2B

Approach Lanes	1		$2+$	
Flow Conditions	Free	Restricted	Free	Restricted
All Approaches	50	75	50	75

Average Hourly Volume	
185	
\% Satisfied	370%

Appendix E

Operations Reports: Total Future Conditions Mitigated (Signalization)

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow			\&		${ }^{7}$	F		*	\uparrow	
Traffic Volume (vph)	40	120	120	190	80	100	105	495	300	145	390	50
Future Volume (vph)	40	120	120	190	80	100	105	495	300	145	390	50
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5			4.5		4.5	4.5		4.5	4.5	
Lane Util. Factor	1.00	1.00			1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.93			0.96		1.00	0.94		1.00	0.98	
Flt Protected	0.95	1.00			0.97		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1752	1732			1762		1719	1781		1805	1835	
Flt Permitted	0.53	1.00			0.60		0.51	1.00		0.09	1.00	
Satd. Flow (perm)	978	1732			1077		918	1781		164	1835	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	40	120	120	190	80	100	105	495	300	145	390	50
RTOR Reduction (vph)	0	34	0	0	15	0	0	24	0	0	5	0
Lane Group Flow (vph)	40	206	0	0	355	0	105	771	0	145	435	0
Heavy Vehicles (\%)	3\%	2\%	1\%	0\%	6\%	0\%	5\%	1\%	0\%	0\%	1\%	8\%
Turn Type	Perm	NA		pm+pt	NA		Perm	NA		pm+pt	NA	
Protected Phases		4		3	8			2		1	6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	29.0	29.0			29.0		41.8	41.8		52.0	52.0	
Effective Green, g (s)	29.0	29.0			29.0		41.8	41.8		52.0	52.0	
Actuated g/C Ratio	0.32	0.32			0.32		0.46	0.46		0.58	0.58	
Clearance Time (s)	4.5	4.5			4.5		4.5	4.5		4.5	4.5	
Vehicle Extension (s)	3.0	3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	315	558			347		426	827		198	1060	
v/s Ratio Prot		0.12						c0.43		c0.05	0.24	
v/s Ratio Perm	0.04				c0.33		0.11			0.38		
v/c Ratio	0.13	0.37			1.02		0.25	0.93		0.73	0.41	
Uniform Delay, d1	21.6	23.5			30.5		14.6	22.8		18.3	10.5	
Progression Factor	1.00	1.00			1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.2	0.4			54.4		1.4	18.6		13.1	1.2	
Delay (s)	21.7	23.9			84.9		16.0	41.4		31.4	11.7	
Level of Service	C	C			F		B	D		C	B	
Approach Delay (s)		23.6			84.9			38.4			16.6	
Approach LOS		C			F			D			B	

Intersection Summary			
HCM 2000 Control Delay	38.5	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	1.01		18.0
Actuated Cycle Length (s)	90.0	Sum of lost time (s)	G
Intersection Capacity Utilization	101.9%	ICU Level of Service	
Analysis Period (min)	15		
c Critical Lane Group			

Appendix F

Operations Reports: Total Future Conditions Mitigated (Signalization + Lane Modifications)

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow		${ }^{7}$	\uparrow		${ }^{7}$	4	「	*	\uparrow	
Traffic Volume (vph)	40	120	120	190	80	100	105	495	300	145	390	50
Future Volume (vph)	40	120	120	190	80	100	105	495	300	145	390	50
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5		4.5	4.5		4.5	4.5	4.5	4.5	4.5	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Frt	1.00	0.93		1.00	0.92		1.00	1.00	0.85	1.00	0.98	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1752	1732		1805	1696		1719	1881	1615	1805	1835	
Flt Permitted	0.64	1.00		0.32	1.00		0.51	1.00	1.00	0.24	1.00	
Satd. Flow (perm)	1188	1732		609	1696		918	1881	1615	451	1835	
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	40	120	120	190	80	100	105	495	300	145	390	50
RTOR Reduction (vph)	0	56	0	0	65	0	0	0	184	0	6	0
Lane Group Flow (vph)	40	184	0	190	115	0	105	495	116	145	434	0
Heavy Vehicles (\%)	3\%	2\%	1\%	0\%	6\%	0\%	5\%	1\%	0\%	0\%	1\%	8\%
Turn Type	Perm	NA		pm+pt	NA		Perm	NA	Perm	pm+pt	NA	
Protected Phases		4		3	8			2		1	6	
Permitted Phases	4			8			2		2	6		
Actuated Green, G (s)	12.7	12.7		22.7	22.7		25.5	25.5	25.5	34.0	34.0	
Effective Green, g (s)	12.7	12.7		22.7	22.7		25.5	25.5	25.5	34.0	34.0	
Actuated g/C Ratio	0.19	0.19		0.35	0.35		0.39	0.39	0.39	0.52	0.52	
Clearance Time (s)	4.5	4.5		4.5	4.5		4.5	4.5	4.5	4.5	4.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	229	334		310	585		356	730	626	315	949	
v/s Ratio Prot		0.11		c0.05	0.07			c0.26		0.03	c0.24	
v/s Ratio Perm	0.03			c0.16			0.11		0.07	0.21		
v/c Ratio	0.17	0.55		0.61	0.20		0.29	0.68	0.19	0.46	0.46	
Uniform Delay, d1	22.1	23.9		16.3	15.1		13.9	16.7	13.3	10.4	10.0	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.4	2.0		3.6	0.2		2.1	5.0	0.7	1.1	1.6	
Delay (s)	22.5	25.9		19.9	15.3		16.0	21.7	13.9	11.5	11.6	
Level of Service	C	C		B	B		B	C	B	B	B	
Approach Delay (s)		25.4			17.6			18.4			11.6	
Approach LOS		C			B			B			B	

Intersection Summary

HCM 2000 Control Delay	17.3	HCM 2000 Level of Service	B
HCM 2000 Volume to Capacity ratio	0.69		18.0
Actuated Cycle Length (s)	65.7	Sum of lost time (s)	D

Analysis Period (min)
15
C Critical Lane Group

Appendix G

Operations Reports: Total Future Conditions Mitigated (Lane Modifications)

Appendix H

Capital Cost Estimates

South-West Ingersoll Secondary Plan - Estimate of Capital Costs - Transportation

	Location	Proposed Infrastructure	Assumptions		Estimate (incl. \% contingency)
New Roads	South of Clarke Road	New residential collector road (450 m)	Urban cross section. Paved. $2 \times 3.3 \mathrm{~m}$ travel lanes, $1 \times 2.4 \mathrm{~m}$ parking lane, $2 \times 2.2 \mathrm{~m}$ on road bike lanes (1.8 m lane +0.4 m buffer) or 2×2.0 cycle tracks (behind the curb), $2 \times 1.8 \mathrm{~m}$ sidewalk		\$ 846,000.00
	West Residential	New residential local roads (1000 m)	Urban cross section. Paved. $2 \times 3.5 \mathrm{~m}$ travel lanes, $2 \times 1.8 \mathrm{~m}$ sidewalk	\$	846,000.00
	West Industrial	New industrial / commercial local roads (350 m)	Urban cross section. Paved. $2 \times 3.5 \mathrm{~m}$ travel lanes, $2 \times 1.8 \mathrm{~m}$ sidewalk	\$	296,000.00
	South Industrial / Commercial	New industrial / commercial local roads (3500 m)	Urban cross section. Paved. $2 \times 3.5 \mathrm{~m}$ travel lanes, $2 \times 1.8 \mathrm{~m}$ sidewalk	\$	2,960,000.00
	East Residential	New residential local roads (2500 m)	Urban cross section. Paved. $2 \times 3.5 \mathrm{~m}$ travel lanes, $2 \times 1.8 \mathrm{~m}$ sidewalk	\$	2,114,000.00
			New Roads Sub-total	\$	7,062,000.00
Road Upgrades	Union Road west of Culloden	Upgrade from local to collector (775 m)	Rural cross section. Paved. $2 \times 3.5 \mathrm{~m}$ travel lanes, $2 \times 2.0 \mathrm{~m}$ paved shoulder	\$	852,000.00
	Union Road between Culloden \& Curry	Upgrade from local to collector (700 m)	Rural cross section. Paved. $2 \times 3.5 \mathrm{~m}$ travel lanes, $2 \times 2.0 \mathrm{~m}$ paved shoulder	\$	770,000.00
	Curry Road between Union and Plank	Upgrade from local to collector (2460 m)	Rural cross section. Paved. $2 \times 3.5 \mathrm{~m}$ travel lanes, $2 \times 2.0 \mathrm{~m}$ paved shoulder	\$	2,703,000.00
	Wallace Line (\& Thompson Road)	Upgrade from local to collector (3400 m)	Rural cross section. Paved. $2 \times 3.5 \mathrm{~m}$ travel lanes, $2 \times 2.0 \mathrm{~m}$ paved shoulder	\$	3,736,000.00
	Clarke Road east of Plank Line	Upgrade from rural to urban residential cross section (725 km)	Urban cross section. Paved. $2 \times 3.5 \mathrm{~m}$ travel lanes, $2 \times 2.2 \mathrm{~m}$ on road bike lanes (1.8 m lane +0.4 m buffer), $2 \times 1.8 \mathrm{~m}$ sidewalk	\$	1,112,000.00
			Road Upgrades Sub-total	\$	9,173,000.00
Intersection Upgrades	Ingersoll Street \& King Street West	Signalization		\$	437,000.00
	Ingersoll Street \& Thomas Street	Signalization		\$	437,000.00
	Ingersoll Street \& Thompson Road	Add EB auxiliary left-turn lane	Storage $=30 \mathrm{~m}$, Taper $=30 \mathrm{~m}$	\$	12,000.00
	Union Road \& Culloden Line	Signalization Add NB auxiliary left-turn lane Add SB auxiliary left-turn lane	Storage $=75 \mathrm{~m}$, Taper $=105 \mathrm{~m}$ (from Plank line \& Sweaburg Rd) Storage $=75 \mathrm{~m}$, Taper $=105 \mathrm{~m}$ (from Plank line \& Sweaburg Rd)	\$	502,000.00
	Harris Street \& Clarke Road	Signalization Add WB auxiliary left-turn lane Add NB auxiliary right-turn lane	Storage $=30 \mathrm{~m}$, Taper $=30 \mathrm{~m}$ Storage $=45 \mathrm{~m}$, Taper $=75 \mathrm{~m}$ (from Plank line \& Sweaburg Rd)	\$	470,000.00
	Plank Line \& Curry Road	Signalization Add EB auxiliary left-turn lane Add SB auxiliary right-turn lane	Storage $=30 \mathrm{~m}$, Taper $=30 \mathrm{~m}$ Storage $=45 \mathrm{~m}$, Taper $=75 \mathrm{~m}$ (from Plank line \& Sweaburg Rd)	\$	470,000.00
			Intersection Upgrades Sub-total	\$	2,328,000.00
New Rail lines	North of Curry	New rail spur (750 m)	New Rail Lines Sub-total	\$	6,435,000.00
				\$	6,435,000.00
Railway Crossing Upgrades	Curry Road	Active Crossing (flashing lights and bells)		\$	163,000.00
	King Street West	Active Crossing (flashing lights bells and gate)		\$	195,000.00
	Ingersoll Street	Active Crossing (flashing lights bells and gate)		\$	195,000.00
	Thomas Road west of Wallace Line	Active Crossing (flashing lights and bells)		\$	163,000.00
	Thomas Road east of Wallace Line	Active Crossing (flashing lights and bells)	Railway Crossing Upgrades Sub-total	\$	163,000.00
				\$	879,000.00
			OVERALL TOTAL	\$	25,877,000.00

[^0]: ${ }^{1}$ Growth forecast based on 2016 population and employment.

[^1]: Capital cost estimates are compiled in Appendix H.

[^2]: ${ }^{3}$ Ontario Traffic Manual Book 12 - Traffic Signals, March 2012.

[^3]: ${ }^{4}$ Ontario Traffic Manual Book 12 - Traffic Signals, March 2012.

[^4]: ${ }^{6}$ Ontario Traffic Manual Book 12 - Traffic Signals, March 2012.

[^5]: ${ }^{7}$ Ontario Traffic Manual Book 12 - Traffic Signals, March 2012.

[^6]: ${ }^{8}$ Ontario Traffic Manual Book 12 - Traffic Signals, March 2012.

